EASTERN UNIVERSITY, SRI LANKA

DEPARTMENT OF MATHEMATICS

EXTERNAL DEGREE EXAMINATION IN SCIENCE (2010/2011)
SECOND YEAR SECOND SEMESTER (Apr./ May, 2017)
EXTMT 202-METRIC SPACE
Special Repeat

Answer all questions
Time: Two hours

1. Define the terms

- metric space.
- complete metric space.
(a) Let $X=\mathbb{R}$ and define $d: X \times X \rightarrow \mathbb{R}$ by

$$
d(x, y)=|x-y|, \quad \forall x, y \in \mathbb{R}
$$

Sow that (X, d) is a metric space.
(b) Prove that every open ball is an open set.
(c) Prove that, for any subset A of a metric space its interior A° is the largest open set contained in A.
(d) Show that arbitrary intersection of closed set is closed.
2. (a) Let (X, d) be a metric space. Show that there is no sequence that can converges to two different limits.
(b) Let (X, d) be a metric space. Show that if a sequence $\left\{x_{n}\right\}$ converges in x then it is bounded.
(c) Let (Y, d) be a subspace of a metric space (X, d). Prove that $A \subseteq Y$ is open in Y and only if there exist a set G open in X such that $A=Y \cap G$.
(d) In a metric space, prove that any Cauchy sequence that contains a convergent sul sequence is convergent.
3. Define the following terms in a metric space:

- separated sets;
- disconnected set;
- connected sets.
(a) Prove that two open subsets of a metric space are separated if and only if they an disjoint.
(b) Suppose that an open set G is the union of two separated sets A and B in a metri space (X, d). Prove that A and B are open.
(c) Prove that a metric space (X, d) is disconnected if and only if it can be written as union of two non-empty disjoint open sets.

4. (a) Define the term compact subset of a metric space,
i. Show that-every finite subset of a metric space is compact.
ii. Prove that every compact subset of a metric space is is bounded.
(b) Let $\left(X, d_{1}\right)$ and $\left(Y, d_{2}\right)$ be a metric spaces and let $f: X \rightarrow \rightarrow Y$ be a function. Prove that the following:
i. f is continuous if and only if $f^{-1}(G)$ is open in X whenever G is open in Y.
ii. f is continuous if and only if $f^{-1}\left(B^{\circ}\right) \subseteq\left(f^{-1}(B)\right)^{\circ}, \quad \forall B \subseteq Y$
