

EASTERN UNIVERSITY, SRI LANKA DEPARTMENT OF MATHEMATICS EXTERNAL DEGREE EXAMINATION IN SCIENCE 2010/2011 SECOND YEAR SECOND SEMESTER (Apr./May, 2017) EXTMT 205 - DIFFERENTIAL GEOMETRY (Special Repeat)

swer all questions

Time : One hour

(a) State Serret-Frenet formula.

Let Γ be a curve with constant torsion τ and a point Q, a constant distance c from the point P on Γ , on the binormal to the curve Γ at P. Show that the angle between the binormal to the locus of Q and the binormal to the given curve Γ is

$$\tan^{-1}\left(\frac{c\tau^2}{\kappa\sqrt{1+c^2\tau^2}}\right)$$

where κ is the curvature of the curve Γ at P.

- (b) Define "normal plane" of a space curve.
 Find the equation for the normal to the curve <u>r</u> = (1+t)<u>e</u>₁ t²<u>e</u>₂ + (1+t³)<u>e</u>₃ at the point t = 1.
- 2. What is meant by saying that a curve is a helix?
 - (a) Prove that, a space curve to be a helix if and only if $\frac{\tau}{\kappa}$ is constant, where τ and κ are torsion and curvature of the given space curve, respectively.
 - (b) Show that the curve given by x = a cos θ, y = a sin θ and z = aθ cot β is a helix, where a and β are constants.