

23 AUG 2013

NUNIVER

EASTERN UNIVERSITY, SRI LANKA DEPARTMENT OF MATHEMATICS SECOND EXAMINATION IN SCIENCE -2009/2010 SECOND SEMESTER (April /May, 2012) MT 202 – METRIC SPACE

Answer all questions

(A)

Time allowed: 02 Hours

- 1. Define the terms metric space and complete metric space. [15 Marks]
 - a. Let l[∞] be the set of all bounded sequences of complex numbers; that is, l[∞] = { x = (x_i)[∞]_{i=1} | x_i ∈ C and ∃ c_x ∈ R such that |x_i| < c_x ∀ i ∈ N}.
 Define d: l[∞] × l[∞] → [0,∞) by d(x,y) = Sup_{i ∈N} |x_i - y_i|, where x = (x_i)[∞]_{i=1}, y = (y_i)[∞]_{i=1} ∈ l[∞].
 Prove that (l[∞], d) is a complete metric space. [40 Marks]

b. Let C_[0,1] be the set of all continuous real valued functions of [0, 1]; that is, C_[0,1] = { f: [0,1] → ℝ | f is continuous on [0,1] }.
Define d: C_[0,1] × C_[0,1] → [0,∞) by d(f, g) = ∫₀¹ | f(t) - g(t) | dt, for f, g ∈ C_[0,1].
Prove that (C_[0,1], d) is **not** a complete metric space.

[45 Marks]

,	-			
		,		

- a. Let (X, d) be a metric space and $a \in X$.
 - I. Show that the open ball $B(a, r) = \{x \in X \mid d(a, x) < r\}$ is an open set for any real number r > 0. [20 Marks]

 II.
 Show that singleton sets are closed in any metric space.
 [15 Marks]

 Is it true that singleton sets are not open in any metric space?
 Justify your answer.

 [10 Marks]

A

b. Let (X, d) be a metric space and let A and B be two subsets of X.

- I. Define terms interior of $A(A^0)$ and closure of $A(\overline{A})$. [10 Marks]
- II. Prove the following:
 - $(A \cap B)^0 = A^0 \cap B^0;$
 - $\overline{(X \setminus A)} = X \setminus A^0$;
 - $X \setminus \overline{A} = (X \setminus A)^0$. [15 x 3 Marks]
- 3. What is meant by a function f from a metric space (X, d_1) to a metric space (Y, d_2) is continuous at a point $a \in X$? [10 Marks]
 - a. Prove that f is continuous on X if, and only if, whenever G is an open set in Y, $f^{-1}(G)$ is open in X. [30 Marks]

Is it true that, if f is continuous on X then the image f(A) of every open set A in X is open in Y? Justify your answer. [15 Marks]

- b. Prove that the following conditions are equivalent:
 - f is continuous on X;
 - $f^{-1}(F)$ is closed in X whenever F is closed in Y;
 - $f^{-1}(B^0) \subseteq (f^{-1}(B))^0$ for every $B \subseteq X$. [15 x 3 Marks]

- 4. Let (X, d) be a metric space and let $f: X \to X$ be a function.
 - a. Let A be a compact subset of X and let $a \in X \setminus A$. Prove that there exist open sets G and H in X such that $a \in G$, $A \subseteq H$ and $G \cap H = \varphi$. [30 Marks]
 - b. Prove that, if A is a compact subset of X then A is closed and bounded. [30 Marks]
 - c. Is it true that, if A is a closed and bounded subset of X then A is compact? Justify your answer. [15 Marks]
 - d. Let A be a compact subset of X and let f be continuous on X. Prove that f(A) is a compact subset of X.

[25 Marks]