EASTERN UNIVERSITY, SRI LANKA

DEPARTMENT OF MATHEMATICS
SECOND EXAMINATION IN SCIENCE - 2010/2011
FIRST SEMESTER (April, 2013)
MT 215 - CLASSICAL MECHANICS II

Answer all questions
Time: One hour

1. With the usual notations derive the following equations for a common catenary:
(a) $S=c \tan \psi$,
(b) $x=c \ln [\sec \psi+\tan \psi]$,
(c) $S=c \sinh (x / c)$.

A weight W is suspended from a fixed point by a uniform heavy string of length l and weight w per unit length. It is drawn aside by horizontal force $\$$. Show that in equilibrium, the distance of W from the vertical through the fixed point is

$$
\frac{P}{w}\left[\sinh ^{-1}\left(\frac{W+l w}{P}\right)-\sinh ^{-1}\left(\frac{W}{P}\right)\right] .
$$

2. With usual notations, prove the Claypeyron's equation

$$
M_{1} a+2 M_{2}(a+b)+M_{3} b=-\frac{w}{4}\left(a^{3}+b^{3}\right)+6 E I\left(\frac{y_{a}}{a}+\frac{y_{b}}{b}\right)
$$

for the bending moment of a slightly elastic beam.
A uniform $\operatorname{rod} A B C$ of weight w per unit length is supported at its ends A, C and at the point B on its length. The three points A, B and C being at the same horizontal level of $A B=a$ and $B C=b$. Show that the reaction of the support at A is $\frac{w}{8 a}\left(3 a^{2}+a b-b^{2}\right)$. Hence, show that the rod can remain in contact with all the supports if

$$
\frac{(\sqrt{13}-1)}{6}<\frac{a}{b}<\frac{(\sqrt{13}+11)}{2}
$$

