23 AUG 2013

EASTERN UNIVERSITY, SRI LANKA DEPARTMENT OF MATHEMATICS SECOND EXAMINATION IN SCIENCE - 2009/2010 SECOND SEMESTER (April/May, 2012)

MT 218 - FIELD THEORY (PROPER \& REPEAT)

Q1. State the Gauss's theorem in Electric field.
(a) i. A spherical conductor of radius $a$ is maintwined at a constant potential $V$. It is surrounded by a concentric spherical enducting cell of radius $b$ which is insulated and carries a charge $e$. Show that at a point at distance $r$ from the center of the sphere $(a \leq r \leq b)$ the potential is given by

$$
\frac{1}{4 \pi \epsilon_{0}}\left\{\frac{e}{b}+\left(4 \pi \epsilon_{0} V-\frac{e}{b}\right) \frac{a}{r}\right\}
$$

where $\epsilon_{0}$ is permittivity of free space.
ii. Assuming that the total charge $Z_{e}$ of an atomic nucleus is uniformly distributed within a sphere of radius $a$. Show that the electric potential at a distance $r$ from the center $(r \leq a)$ is

$$
V=\left[3-\left(\frac{r}{a}\right)^{2}\right] \frac{Z_{e}}{8 \pi \epsilon_{0} a} .
$$

(b) i. A semi-infinite straight uniformly charged filament has a charge $\lambda$ per unit length. Find the magnitude and the direction of the field intensity at the point separated from the filament by a distance $y$ and lying on the normal to the filament passing through its end.
ii. Find the electric field $E(r)$, inside and outside of a uniformly charged insulating sphere with total charge $Q$ and radius $R$,

Q2. If $\phi$ is the potential due to an axisymmetric system, then we have $\nabla^{2} \phi=0$ in free space.
By taking $\phi(r, \theta, \psi)=\frac{1}{r} U(r) P(\theta) Q(\psi)$, show that
i. $\frac{d^{2} u}{d t^{2}}-\frac{d u}{d t}-l(l+1)=0$;
ii. $\frac{d}{d x}\left[\left(1-x^{2}\right) \frac{d p}{d x}\right]+l(l+1) P=0$.

By solving these two equations show that the solution of the Laplace's equation $\nabla^{2} \phi=0$ can be written as

$$
\phi=\sum_{l=0}^{\infty}\left(A_{l} r^{l}+\frac{B_{l}}{r^{l+1}}\right) P_{l}(\cos \theta)
$$

where $P_{l}$ is the solution of the differential equation

$$
P_{l}(x)=\frac{1}{2^{l} l!} \frac{d^{l}}{d x^{l}}\left[\left(x^{2}-1\right)^{l}\right] .
$$

Hint: Laplace equation for spherical co-ordinate system is given by

$$
\frac{1}{r^{2}} \frac{\partial}{\partial r}\left(r^{2} \frac{\partial \phi}{\partial r}\right)+\frac{1}{r^{2} \sin ^{2} \theta} \frac{\partial}{\partial \theta}\left(\sin \theta \frac{\partial \phi}{\partial \theta}\right)+\frac{1}{r^{2} \sin ^{2} \theta} \frac{\partial^{2} \phi}{\partial \psi^{2}}=0
$$

Q3. (a) Using Ampere's circuit law and Biot-Savart law, prove that $\nabla^{2} \phi=0$, where $\phi$ is scalar potential.
(b) Show that the equivalence between Biot-Savart and Ampere's laws will be Wrought out by determining the magnetic field $\vec{B}$ due to an infinitely long conductor carrying a steady current through it.
(c) A long thin tlat strip of metal is of width $W$ and has a current $I$ flowing along it. Find the magnetic induction $B$ at a point $P$ in the plane of the strip at a distance $b$ from the nearest edge.

Q4. (a) State the Newton's law of gravitation.
Derive an equation to find the gravitational force between a uniform sphere of mass $M$, radius $r$ and a particle of mass $m$.
(b) State the Gauss's theorem in gravitational field. State and prove Kepler's first law.
$A$ solid of mass $m$ and radius $a$ with density proportionad to the distance fram the center is built up a state of infinite dispersion. Show that the toss of potential energy is $\frac{4 G m^{2}}{7 a}$.

