EASTERN UNIVERSITY, SRI LANKA

SECOND EXAMINATION IN SCIENCE - 2014/2015

FIRST SEMESTER (REPEAT)

(November 2016)

PH 202 ELECTRONICS - I

Time: 01 hour
Answer ALL Questions
Q1.
Distinguish a p-type extrinsic semiconductor from an intrinsic semiconductor in terms of charge carriers, explaining by use of valence-conduction energy band diagrams.
... (50\% marks)
A relation for the intrinsic carrier concentration $n_{i}\left(\mathrm{~cm}^{-3}\right)$ in silicon as a function of temperature $T(K)$ is given by

$$
n_{i}(T)=5.29 \times 10^{19}(T / 300)^{2.54} \exp ^{(-6726 / T)}
$$

(i) Hence determine the resistivity of the intrinsic silicon spedmen at $25^{\circ} \mathrm{C}$.
(ii) An intrinsic silicon specimen is doped with an indium atom to the small concentration of one part per 10 million silicon atoms; determine the resulting resistivity for the impure silicon specimen. Compare with the value that of pure silicon specimen.
... (50\% marks)
You may assume that the resistivity of a semiconductor is given by $\rho=\frac{1}{\left(n \mu_{e}+p \mu_{h}\right)|q|}$; where the symbols have their usual meaning. Also assume the mobility of electrons and holes at $25^{\circ} \mathrm{C}$ to be 3800 and $1800 \mathrm{~cm}^{2} / \mathrm{Vs}$ respectively. Also take the mass density and atomic weight of silicon to be 2.33 $\mathrm{g} / \mathrm{cm}^{3}$ and 28.09 a.m.u. respectively; and an electron charge as $1.6 \times 10^{-19} \mathrm{C}$. $\left(1 \mathrm{a} . \mathrm{m} . \mathrm{u} .=1.66 \times 10^{-27} \mathrm{~kg}\right)$

Q2.
Briefly explain the action of p-n-p bipolar junction transistor (BJT) in amplifying mode.

Describe by means of a schematic diagram the output characteristics of BJT, identifying the active, saturation and cut-off regions. Describe the function of the BJT in each of these regions.
... (25\% marks)
The figure below shows the modified form of a simple common-emitter amplifier where the base bias is supplied from the collector.

Figure 01
The d.c. power supply is $V_{c c}=12 \mathrm{~V}$ and for a germanium transistor $\left(V_{B E}=0.3 \mathrm{~V}\right)$ of $\beta=100$, the operating point is set at $V_{C E}=8 \mathrm{~V}$ and $I_{C}=\frac{1}{2} m A$; find the values of R_{b} and R_{C}. If another germanium transistor is now replaced with $\beta=250$, find the new operating point.

