EASTERN UNIVERSITY, SRI LANKA DEPARTMENT OF MATHEMATICS THIRD EXAMINATION IN SCIENCE - 2016/2017

FIRST SEMESTER (March/April, 2019)
AM 305-OPERATIONAL RESEARCH

Answer all Questions
Time: Three hours

1. Define what is meant by the following terms: ", "

* Linear Programming;
* objective function of a Linear Programming Problem.

A firm manufactures two products A and B on which therofits earned per unit are Rs. 3 and Rs. 4 respectively. Each product is processed on two machines M_{1} and M_{2}. Product A requires one minute of processing time on M_{1} and two minutes on M_{2}, while B requires one minute on M_{1} and one minute on M_{2}. Machine M_{1} is available for not more than 7 hours and 30 minutes, while machine M_{2} is available for 10 hours during any working day. Find the number of units of products A and B to be manufactured to get maximum profit.
2. Use the Simplex method to solve the following linear programming problem:

Maximize $Z=2 x_{1}+3 x_{2}+4 x_{3}$ subject to the constraints:

$$
\begin{aligned}
& 3 x_{1}+x_{2}+4 x_{3} \leq 600, \\
& 2 x_{1}+4 x_{2}+2 x_{3} \geq 480, \\
& 2 x_{1}+3 x_{2}+3 x_{3}=540,
\end{aligned}
$$

where $x_{1}, x_{2}, x_{3} \geq 0$.
3. Use Revised Simplex Method to solve the following Linear Programming Prot Minimize $Z=-4 x_{1}+x_{2}+2 x_{3}$ subject to the constraints:

$$
\begin{gathered}
2 x_{1}-3 x_{2}+2 x_{3} \leq 12, \\
-5 x_{1}+2 x_{2}+3 x_{3} \geq 4, \\
3 x_{1}-2 x_{3}=-1,
\end{gathered}
$$

where $x_{1}, x_{2}, x_{3} \geq 0$.
4. Briefly explain the Vogel's Approximation Method.

Find the optimum solution by using Vogel's Approximation Method to the follo transportation problem in which the cells contain the transportation cost in rus between different cities. The supplies in the cities U, V, W and X are 40, 30 and 10 respectively and the demands in the cities A, B, C, D and E are 30 15, 20 and 5 respectively.

	Cities				
Cities	A	B	C	D	E
U	7	6	4	5	9
V	8	5	6	7	8
W	6	8	9	6	5
X	5	7	7	8	6

5. Briefly explain the Hungarian Method for solving assignment problems.

A small garment making unit has five tailors stitching five different types of ments. All the five tailors are capable of stitching all the five types of garme The output per day per tailor for each type of garment is given below:

	Garments				
Tailors	1	2	3	4	5
A	7	9	4	8	6
B	4	9	5	7	8
C	8	5	2	9	8
B	6	5	8	10	10
C	7	8	10	9	9

The profits (Rs.) for each type of garment are 2, 3, 2, 3 and 4 respectively.
(i) Which type of garment should be assigned to which tailor in order to maximize the profit?
(ii) If tailor D is absent for a specified period and no other substitute tailor is available, what should be the optimal assignment?
6. Find the maximum flow for the following network by
(a) intuitive technique;
(b) labeling technique.

