EASTERN UNIVERSITY, SRI LANKA DEPARTMENT OF MATHEMATICS
 THIRD EXAMINATION IN SCIENCE 2015/2016
 FIRST SEMESTER (May/June, 2018)
 AM 306 - PROBABILITY THEORY

swer all questions
Time : Two hours
lculator and Statistical tables will be provided

1. (a) State Bayes' theorem.

A new test is developed to identify people who are liable to suflom frome genetic disease in later life. Suppose that 1 in 1000 of the population is a carrier of the disease. Suppose also that the probability that a carrier tests negative is 1%, while the probability that a non carrier tests positive is 5%.
i. A patient has just had a positive test result. What is the probability that the patient is a carrier?
ii. A patient has just had a negative test result. What is the probability that the patient is a carrier?
(b) A random variable X has Poisson distribution with parameter λ. Find the mean, variance of X.
(c) In a certain manufacturing process, 10% of the tools produced turn out to be defective. Find the probability that in a sample of 10 tools chosen at random, exactly 2 will be defective, by using
i. the binomial distribution;
ii. the Poisson approximation to the binomial distribution.
2. Define the "moment generating function" of a random variable X.
(a) Show that if X and Y are independent random variables, then $X+Y$ has the moms generating function

$$
M_{X+Y}(t)=M_{X}(t)+M_{Y}(t) .
$$

(b) The probability density function of a Gamma distribution with parameters m and given by

$$
f_{X}(x)=\left\{\begin{array}{lc}
\frac{\lambda^{m} x^{m-1} e^{-\lambda x}}{\Gamma(m)} & \text { if } \quad x>0 \\
0 & \text { otherwise }
\end{array}\right.
$$

i. Find the moment generating function of X.
ii. Let X and Y be independent random variables, X having the Gamma distribu with parameters m and λ, and Y having the Gamma distribution with params s and λ. Show that $X+Y$ has the gamma distribution with parameters $m+s$ λ.
(c) Let $X_{1}, X_{2}, \cdots, X_{n}$ be independent random samples of size n from an expone distribution with mean $\frac{1}{\lambda}$.
i. Show that $T=\sum_{i=1}^{n} X_{i}$ follows the gamma distribution with parampters n and ii. Hence prove that $2 T$ follows the chi-square distribution with $2 n$ degrees of free
3. (a) If X and Y are independent exponential random variables with parameter $\lambda>0$ i. Find the joint probability density function of $U=X+2 Y$ and $V=2 X+Y$ ii. Are X and Y independent?
(b) A random variable X has a gamma distribution with parameters $m=1$ and Find the probability density function of the random variable e^{X}.
(c) A random variable X has a Uniform distribution on the interval from 0 to 10 . $P\left[X+\frac{10}{X} \geq 7\right]$.
4. (a) Let $X_{1}, X_{2}, \cdots, X_{n}$ be a random sample of size n from the normal distribution with mean μ and variance σ^{2}.
i. Find the maximum likelyhood estimators of μ and σ^{2}.
ii. Are your estimators of μ and σ^{2} unbiased? Justify your answer.
(b) In measuring reaction time, a psychologist estimates that the standard deviation is 0.05 second. How large a sample of measurements must he take in order to be 95% confident that the error in his estimate of mean reaction time will not exceed 0.01 second?

