EASTERN UNIVERSITY, SRI LANKA
DEPARTMENT OF MATHEMATICS
HIRD YEAR EXAMINATION IN SCIENCE - 2014/2015
SECOND SEMESTER (Dec., 2017/Jan., 2018)
AM 307 - CLASSICAL MECHANICS III

swer all Questions

Time: Three hours

Two frames of reference S and S^{\prime} have a common origin O and S^{\prime} rotates with a constant angular velocity $\underline{\omega}$ relative to S. If a moving particle P has its position vector as \underline{r} relative to O at time t, then show that:
(a) $\frac{d \underline{r}}{d t}=\frac{\partial \underline{r}}{\partial t}+\underline{\omega} \wedge \underline{r}$;
(b) $\frac{d^{2} \underline{r}}{d t^{2}}=\frac{\partial^{2} r}{\partial t^{2}}+2 \underline{\omega} \wedge \frac{\partial r}{\partial t}+\frac{\partial \underline{\omega}}{\partial t} \wedge \underline{r}+\underline{\omega} \wedge(\underline{\omega} \wedge \underline{r})$.

An object of mass m initially at rest is dropped to the earth's surface from a height h above the earth's surface. Assuming that the angular speed of the earth about its axis is a constant ω. Prove that after time t the object is deflected east of the vertical by the amount

$$
\frac{1}{3} \omega g t^{3} \cos \lambda
$$

and show that it hits the earth at a point east of the vertical at a distance

$$
\frac{2}{3} \omega h \cos \lambda \sqrt{\frac{2 h}{g}}
$$

where λ is the earth's latitude.
2. (a) Define the following terms:
i. linear momentum;'
ii. angular momentum;
iii. moment of force.
(b) With the usual notations, obtain the equations of motion for a system of N particles in the following form:
i. $M f_{G}=\sum_{i=1}^{N} F_{i}$;
(Hint : You may assume $\sum_{i=1}^{N} m_{i} \underline{v}_{i}=M \underline{v}_{G}$.)
ii. $\frac{d \underline{H}}{d t}=\sum_{i=1}^{N \backslash} \underline{r}_{i} \wedge \underline{F}_{i}$, where $\sum_{i=1}^{N} \underline{h}_{i}=\underline{H}$ and $\underline{h}_{i}=\underline{r}_{i} \wedge m_{i} \underline{v}_{i}$;
iii. $T=T_{G}+\frac{1}{2} M v_{G}^{2}$.

A uniform sphere of mass m and radius a is released from rest on a plane inclined at an angle θ to the horizontal. If the sphere rolls down without slipping, show that the acceleration of the center of the sphere is a constant and equal to $\frac{5}{7} g \sin \theta$.
3. With the usual notation obtain the Euler's equations for the motion of theigid body, having a point fixed, in the form:

$$
\begin{aligned}
& A \dot{\omega}_{1}-(B-C) \omega_{2} \omega_{3}=N_{1} \\
& B \dot{\omega}_{2}-(C-A) \omega_{1} \omega_{3}=N_{2} \\
& C \dot{\omega}_{3}-(A-B) \omega_{1} \omega_{2}=N_{3}
\end{aligned}
$$

The principal moments of inertia of a body at the center of mass are $A, 3 A, 6 A$. The body is so rotated that its angular velocities about the axis are $3 n, 2 n, n$ respectively. If in the subsequent motion under no forces, $\omega_{1}, \omega_{2}, \omega_{3}$ denote the angular velocities about the principal axes at time t, show that

$$
\omega_{1}=3 \omega_{3}=\frac{9 n}{\sqrt{5}} \sec u \text { and } \omega_{2}=3 n \tanh u
$$

where $u=3 n t+\frac{1}{2} \ln 5$.
4. Obtain the Lagrange's equations of motion using D'Alembert's principle for a conservative holonomic dynamical system.

A simple pendulum consists of a mass m_{2} attached to a massless rod of length l. A mass m_{1} lies at the point of support and can move on a horizontal line lying in the plane in which m_{2} moves. Find the Lagrange's equations of motion of the system.
5. With the usual notations, write the Lagrange's equation for the impulsive motion.

Two rods $A B$ and $B C$, each of length a and mass m, are frictionlessly joined at B and lie on a frictionless horizontal table. Initially both rods are collinear. An impulse I is applied at point A in a direction perpendicular to the line $A B C$. Prove that, immediately after the application of impulse, the center of mass of $A B$ and $B C$ has the velocity $\left(0, \frac{5 I}{4 m}\right)$ and $\left(0,-\frac{I}{4 m}\right)$ respectively.
(a) Define the Poisson bracket.

Show that the Hamiltonian equations of the holonomic system may be written in the form

$$
\dot{q}_{k}=\left[q_{k}, H\right], \quad \dot{p}_{k}=\left[p_{k}, H\right],
$$

and show that for any function $f\left(q_{i}, p_{i}, t\right), \frac{d f}{d t}=\frac{\partial f}{\partial t}+[f, H]$.
(b) i. For a one-dimensional system with the Hamiltonian

$$
H=\frac{p^{2}}{2}-\frac{1}{2 q^{2}},
$$

show that there is a constant of the motion

$$
D=\frac{p q}{2}-H t
$$

ii. As a generalization of part (i), for motion in a plane with the Hamiltonian

$$
H=|\underline{P}|^{n}-a r^{-n}
$$

where \underline{P} is the vector of the momenta conjugate to the Cartesian coordinates, show that there is a constant of the motion

$$
D=\frac{\underline{P} \cdot \underline{r}}{n}-H t
$$

