2 FEB 2018	
EASTERN UNIVERSITY, SRI	LANKA
FACULTY OF COMMERCE AND MA	NAGEMENT
SECOND YEAR SECOND SEMESTER E	KAMINATION IN
OF BUSINESS ADMINISTRATION/ BACHELOR O (PROPER/ REPEAT/ RE-RE COM 2053 BUSINESS STAT	F COMMERCE - 2014/2015 (July 2017) PEAT) ISTICS
uestions. permitted.	Time: 03 Hours
e letter of the best choice for each question in the g	ven answer script:
mple of 400 households in the given region is selected	and several variables are recorded. Which of

Total household income (in rupees) is interval level data.

Socioeconomic status recorded as "low income", "middle income", or "high income" is nominal level data.

The number of people living in a household is a discrete variable.

The primary language spoken in the household is ordinal level data.

None of the above.

iich of the following exhibits the correct relationship between variables and values?

- Red; price of an automobile b) Color of an automobile; price of an automobile
- Red; Rs.23,000

d) Color of an automobile; Rs.23,000

1

Rs. 23000; Color of an automobile

following statements is correct?

riables in which measurement is always approximate because they permit an unlimited number of ermediate values are

Nominal b) Discrete c) Ordinal d) Continuous e) Interval

hich of the following would be most suitable for displaying the proportions of a city's budget spent on fferent items?

) Pie chart b) Bar chart c) Line graph d) Histogram e) Scatter plot

hen constructing a frequency distribution, which of the following rules must be followed?

The midpoint of each class must be an integer.

The width of each class is equal to the lowest value in the data set.

Adjacent classes cannot overlap.

The number of classes must be an even number.

The lower limit of the first class interval is equal to the lowest value in the data set

Questions from 6 to 8 are based on the following grouped frequency table of the income 30 employees at a local small business (in Rs.1000s).

	Income	26 < X ≤ 28	28 < X ≤ 30	30 < X ≤ 32	32 < X ≤ 34	34 < X ≤ 36	
	Frequency	2	11	8.	5	4	
6)	The relative of	cumulative fre	quency of the 2	28 < X ≤ 30 cla	ss is		
	a) 11	b) 0.4	3 c)	0.06	d) 13	e) 0.7	
7)	The class that	contains the	80 th percentile	e is			
	a) 26 < X ≤	28 b) 28	< X ≤ 30 c)	$30 < X \leq 32$	d) 32 < X ≤ 34	4 e) 34 < X	
8)	If the boss' in approximatel	come (the "31 y equal to	st employee")	is Rs. 250,000,	the mean incom	e for all 31 wor	
	a) Rs. 8,000) b) Rs.	30,000 c)	Rs. 38,000	d) Rs. 140,00	0 e) Rs. 220	
9)	Which of the f	following is no	t a condition o	of a binomial pr	obability distrib	ution?	
	a) Only two c) Must hav e) None of t	possible outc ve at least thre he above	omes e trials	b) Con d) Inde	stant probability ependent trails	7 of success	
10)	If P(-2 <z<k) =<="" td=""><td>.6 , where Z is</td><td>a standard no</td><td>ormal random v</td><td>variable, then k i</td><td>S</td></z<k)>	.6 , where Z is	a standard no	ormal random v	variable, then k i	S	
	a) 0.5773	b) 0.19	r5 c)	0.73	d) 0.55	e) -0.40	
11)	The mean and	the variance a	are equal in				
	a) all probalc) the Poissee) the stude	bility distribut on distribution nt –t distribut	ions 1 ion	b) the l d) the u	pinomial distribu Iniform distribu	ition tion	
12)	A probability f	unction is a ru	le of correspo	ndence or equa	ation that		
	 a) finds b) assig c) assig d) defin e) none 	the mean values ons values of a ons probabilition the variabilition of the above i	ue of the rando random varial es to the varior lity in the expe s correct	om variable ble to the even us values of a r eriment	ts of a probabilit andom variable	y experiment	
13)	The normal ap	proximation to	o the binomial	is used when			
	a) the samplc) the meane) none of th	e size is at leas and the varian le above	st 30 ice are the sam	b) both ne d) the z	np and np(1-p) ; value is greater	are at least 5 than 0	
14)	Which of the fo	llowing staten	nents abo <mark>ut</mark> hy	pothesis tests	is incorrect ?	10	
	a) Null hypothb) In a one-taic) If the test sd) The claim ce) The critical	nesis must alw lled test, alterr tatistic lies in t can be either n value indicate	ays include eq native hypothe the rejection ro ull hypothesis es the start of t	uality sis involves eit egion, we rejec or alternative l he rejection re	her ">" or "<", bu t the claim. hypothesis gion	it not "≠."	

sample of twenty-five observations is taken from a normal population with variance 9. 90% ifidence limits corresponding to a sample mean of 30 are best represented by

 30 ± 9.00 b) $30 \pm .79$ c) 30 ± 1.03 d) $30 \pm .47$ e) $30 \pm .99$

nich of the following is a true statement regarding the comparison of t-distributions to the standard rmal distribution?

- The normal distribution is symmetrical whereas the t-distribution is slightly skewed.
- The proportion of area beyond a specific value of t is less than the proportion of area beyond the corresponding value of z.
- The greater the df, the more the t-distributions resemble the standard normal distribution
- The mean of the standard normal is zero whereas the mean of the t-distribution is greater than zero
- All of the above.

e size of a confidence interval for a mean is affected by changes in which of the following?

b)

- The size of the sample
- The variance of the sample
- a, b, and c

d) b and c only

The confidence coefficient

3

e distribution of means of all possible samples of the same size n drawn from a population will proximate the normal curve if

-) the n is large enough.
- the population is symmetrical.
- b) the population is large.
- ical. d) the mean of each sample equals the mean of the population.

none of the above is correct.

ampling distribution

- is a distribution of all the various sample statistics that can be found for one sample.
- of the mean is a distribution of the means taken from all possible samples of a given size n that could be taken from the population.
- of any statistic has an approximately normal distribution.
- is a histogram showing the distribution of the sample.
- all of the above are correct.

hat test statistic is used for a global test of significance in the regression analysis?

Z test b) t-test c) Chi-square test d) F test e) p test

Spearman's co-efficient of rank correlation is equal to one, then

- the rankings of the two variables totally agree
- all the total variation is explained by the regression line
- the rankings of the two variables is totally different
- the rankings of the two variables partially agree
- none of the above is correct

22)	What does the slope represent in the simple linear regression analysis?
,	 a) The predicted value of Y when X = 0 b) The estimated change in average Y per unit change in X c) The predicted value of Y d) The variation around the line of regression e) All the above are correct
23)	Finding the centered four-quarter moving average helps us to identify the
	 a) trend component b) cyclical component c) seasonal component d) irregular component e) none of the above
24)	In time series seasonal variations can occur within a period of
,	a) One year b) Four years c) Nine years d) Three years e) Five years
25)	Variations due to floods, droughts, strikes, fires and political disturbances are:
	a) Trend b) Seasonal c) Cyclical d) Irregular e) All of the above
11)	 average unpaid balance for these accounts is RS. 7500, a lighte obtained by a average of the unpaid balances for 50 of the accounts. a) Identify the population and its parameter. b) What is the sample? c) Is the figure of Rs. 7500 a parameter or a statistic? Explain it. Thirty adults were asked which of the following conveniences they would find more without: television (T), refrigerator (R), air conditioning (A), public transportation (P).
	(M). Their responses are instead below.
	A R R T P P T R A
	, R P A T R P R A F
	 a) Prepare a frequency distribution table. b) Calculate the relative frequencies and percentages for all categories. c) What percentage of these adults named refrigerator or air conditioning find me without? d) Would find most difficult to do without? e) Draw a bar graph for the relative frequency distribution
III	A department store manager is interested in the number of complaints received by an department about the quality of electrical products sold by the store. Records over a yield the data shown in the table.

ek	1	2	3	4	5	6	7	8	9	10
. of Complaints	13	15	08	16	08	04	21	11	03	15

Find the mean, median and mode of complaints.

Find the variance, standard deviation, range and interquartile range.

Based on the measures calculated in the above two parts, what would you conclude about the complaints made on electrical products sold by the store?

(20 Marks)

economist wishes to estimate the total cost of a project to offer a proper price for it. She values its job I fixed quantity of Rs. 12000 and a variable quantity of Rs. 300 per day of work. It is known that the will take between 7 and 11 days according to the following probability function for X = "number of 's that the job will take"

Х	7	8	9	10	11
P(X = x)	0.10	0.20	0.30	0.30	0.10

Compute the probability that the project takes 9 or 10 days.

Compute the mean number of days the project will take.

Find the standard deviation for the number of days the project will take and interpret this value.

Determine the expected cost of the project and its standard deviation.

popular soft drink is sold in 2-liter (2000- milliliters) bottles. Because of variation in the filling ocess, bottles have a mean of 2000 milliliters and a standard deviation of 20 milliliters, normally tributed.

- If the process fills the bottle by more than 60 milliliters, the overflow will cause a machine malfunction. What is the probability of this occurring?
- If the manufacturer samples100 bottles, what is the probability that the mean is less than 1950 milliliters?

e numbers of accidents in a production facility has a Poisson distribution with mean 2.6 per month.

- For a given month, what is the probability there will be fewer than two accidents?
- What is the probability that there will be exactly 10 accidents next year?

ery day 5 units are selected in an industrial selection process. The quality control department stops p production process if two or more of the samples of five units have defects. If the percentage of fective units is p = 0.05,

- Compute the probability that the process is stopped.
- Find the expected value and the standard deviation of defective units

(18 Marks)

researcher works for a business regulatory agency, finds that in a sample of 1762 people in a rticular country 1004 of them believe that government regulation of business does more harm than od.

Construct a 95% confidence interval for the proportion of people who believe that government regulation of business does more harm than good and interpret it.

- b) Based on your answer in part (a), what would you conclude about the claim that 6 believe that government regulation of business does more harm than good significance?
- II) An insurance company wants to know if the average speed at which men drive cars is of women drivers. The company took a random sample of 27 cars driven by men o found the mean speed to be 72 km per hour with a standard deviation of 2.2 km p sample of 18 cars driven by women on the same highway gave a mean speed of 68 km standard deviation of 2.5 km per hour.
 - a) What is the point estimate of the difference between the mean speeds of cars drive
 - b) Construct a 95% confidence interval for the difference between the mean speeds all men and all women on this highway and interpret it.
 - c) Testing at the 1% significance level, can you conclude that the mean speed of cars d^{II} drivers on this highway is greater than that of cars driven by all women drivers?
 - d) State the assumptions you made to solve this problem.

05. I) A random sample of eight drivers insured with a company and having similar miniminimi insurance policies was selected. The following table lists their driving experience monthly auto insurance premiums (in Rs. 100s).

Driving Experience (years)	Monthly Auto Insurance Premium (in Rs. 100s)
5	64
2	87
12	50
9	71 ,
15	44
6	56
25	42
16	60

- a) Does the insurance premium depend on the driving experience, or does the dr depend on the insurance premium? Do you expect a positive or a negative relative these two variables?
 - b) Compute the correlation coefficient and interpret it.
 - c) Calculate the coefficient of determination and interpret its value based on the given
 - d) Estimate the least squares regression equation in an attempt to predict the month by the years of driving.
 - e) Predict the monthly auto insurance premium for a driver with 10 years of driving

II) Galaxy International manufactures and sells toys all around the world. Management a company wishes to determine seasonal indexes for the quarterly data on revenue. The shows the quarterly sales for Galaxy International for the years 2014 through 2017 reported in millions of rupees.

60

d

s g

on pei m

Year 2014 2015 2016		Sales					
	Q 1	Q 2	Q 3	Q4			
2014	30	50	70	25			
2015	40	58	88	42			
2016	62	75	105	45			

n?

₀alculate the centered four-point moving average for the given time series

etermine the seasonal index for each of the four quarters using the ratio to moving average

orecast the demand for the four quarters of 2017 using trend forecasts of 65, 80, 95 and 52.

(20 Marks)

Normal Probabilities

				4		<u>x</u>			
.00	.01	.02	.03	.04	.05	.06	.07	.08	.09
.0000	.0040	.0080	.0120	.0160	.0199	.0239	.0279	.0319	.0359
.0396	.0438	.0478	.0517	.0557	.0596	.0636	.0675	.0714	.0753
.0793	.0832	.0871	.0910	.0948	.0987	.1026	· .1064	.1103	
.1179	.1217	.1255	.1293	.1331	.1368	.1406	.1443	.1480	.1517
.1554	.1591	.1628	.1664	.1700	.1736	.1772	.1808	.1844	.1879
.1915	.1950	.1985	.2019	.2054	.2088	.2123	.2157	.2190	.2224
.2257	.2291	.2324	.2357	.2389	.2422	.2454	.2486	.2517	.2549
.2580	.2611	.2642	.2673	.2704	.2734	.2764	.2794	.2823	.2852
.2881	.2910	.2939	.2967	.2995	.3023	.3051	.3078	.3106	.3133
.3159	.3186	.3212	.3238	.3264	.3289	.3315	.3340	.3365	.3389
.3413	.3438	.3461	.3485	.3508	.3531	.3554	.3577	.3599	.3621
.3643	.3665	.3686	.3708	.3729	.3749	.3770	.3790	.3810	.3830
.3849	.3869	.3888	.3907	.3925	.3944	.3962	.3980	.3997	.4015
.4032	.4049	.4066	.4082	.4099	.4115	.4131	.4147	.4162	.4177
.4192	.4207	.4222	.4236	.4251	.4265	.4279	.4292	.4306	.4319
.4332	.4345	.4357	.4370	.4382	.4394	.4406	.4418	.4429 '	.4441
.4452	.4463	.4474	.4484	.4495	.4505	.4515	.4525	.4535	.4545
.4554	.4564	.4573	.4582	.4591	.4599	.4608	.4616	.4625	.4633
.4641	.4649	.4656	.4664	.4671	.4678	.4686	.4693	.4699	.4706
.4713	.4719	.4726	.4732	.4738	.4744	.4750	.4756	.4761	.4767
.4772	.4778	.4783	.4788	.4793	.4798	.4803	.4808	.4812	.4817
.4821	.4826	.4830	.4834	.4838	.4842	.4846	.4850	.4854	
.4861	.4864	.4868	.4871	.4875	.4878	.4881	.4884	.4887	.489
.4893	.4896	.4898	.4901	.4904	.4906	.4909	.4911	.4913	.491
.4918	.4920	.4922 .	.4925	.4927	.4929	.4931	.4932	.4934	.493
.4938	.4940	.4941	.4943	.4945	.4946	.4948	.4949	.4951	.495
.4953	.4955	.4956	.4957	.4959	.4960	.4961	.4962	.4963	.496
.4965	.4966	.4967	.4968	.4969	.4970	.4971	.4972	.4973	.497
.4974	.4975	:4976	.4977	.4977	.4978	.4979	,4979	.4980	.498
.4981	.4982	.4982	.4983	.4984	.4984	.4985	.4985	.4986	.498
.4987	.4987	.4987	.4988	. 4988	.4989	.4989	.4989	.4990	.499

SOURCE: Abridged from Table 1 of A. Hald, Statistical Tables and Formulas (New York: Wiley & Sons, Inc.), 1952. Reproduced by permission of A. Hald and the publisher, John Wiley & Sons, Inc.

Critical Values of t

X	1
	A, A
1	

Contraction of the second

BEGREES OF	tan	ton	fint	t.010	t.005	DEGREES OF	f.100	t.050	t.025
ADDI VIII	0.000	2 05 A	10.000	31 971	63 657	24	1.318 1	.711	2.064
1	3.0/8	0.314	12:/00	K OKS	0 025	25	1.316 1	.708	2.060 Re
2	1.886	2.920	9 100	4 541	5 841	26	1.315 1	.706	2.056
3	1.638	2.333	3.102	2.021	1.011	07	1 314 1	703	2.052
4 198 21	1.533	• 2.132	2.776	3./%/	4:004		1 212 1	701	2.048 re
5	1.476	2.015	2.571	3.365	4.032	28	1.313		2.045 to
6	1.440	1.943	2.447	3.143	3.707	29	1.311		2.040 00
7	1.415	1.895	2.365	2.998	3.499	30	1.310	1.697	2.042 00
8	1.397	1.860	2.306	2.896	3.355	35	1.306	1.690	2.030
9	1.383	1.833	2.262	2.821	3.250	40	1.303	1.684	2.021
10	1.372	1.812	2:228	2.764	3.169	45	1.301	1.679	2.014
11	1.363	1.796	2.201	2.718	3.106	50	1.299	1.676	2.009 in
10	1.356	1.782	2.179	2.681	3.055	. 60	1.296	1.671	2.000
12	1 350	1.771	2,160	2.650	3.012	70	1.294	1.667	1.994 il
14	1 345	1.761	· 2.145	2.624	2.977	80	1.292	1.664	1.990 b
15	1 341	1.753	2.131	2.602	2.947	90	1.291	1.662	1.987
16	1.337	1.746	2.120	2.583	2.921	100	1.290	1.660	1.984
17	1.333	4.740	2.110	2.567	2.898	120	1.289	1.658	1.980
18	1.330	1.734	2.101	2.552	2.878	140	1.288	1.656	1.977
10	1 328	1.729	2.093	2.539	2.861	160	1.287	1.654	1.975
20	1 925	1725	2.086	2.528	2.845	180	1.286	1.653	1.973
20	1 1 272	721	2.080	2.518	2.831	200	1.286	1.653	1.972
41	1 201	1717	2.074	2,508	2.819	00	1.282	1.645	1.960
22	1.321	714	2 069	2,500	2.807	7			
40	1.017	11 12	4.007		14 (A. A. A. A.	1 1 1 1 1 1 1			

SOURCE: From M. Merrington, "Table of Percentage Points of the t-Distribution," Biometrika 32 (1941): 300. Reprint of the Biometrika Trustees.

nd