EASTERN UNIVERSITY, SRI LANKA
DEPARTMENT OF MATHEMATICS
THIRD EXAMINATION IN SCIENCE - 2016/2017
FIRST SEMESTER (Mar./Apr., 2019)
CS 301-COMPUTER GRAPHICS

1. (a) Define in your own words what computer graphics is.
(b) Differentiate Raster scan display and Random scańdisplay.
(c) Explain the term scan conversion in relation to computer graphics.
(d) Consider the Bresenham circle drawing algorithm: *
i. Derive the necessary equations involved to generate a sesenham circle.
ii. Write the Bresenham circle algorithm.
iii. Apply the algorithm to obtain all the pixel co-ordinates to draw the first quarter of the circle of radius $r=8$ with center at $(4,3)$.
2. (a) Give the corresponding matrices (in homogeneous system) for each of the following two dimensional transformations in computer graphics.
i. Translation with distances $t x$ and $t y$ for the x and y co-ordinates, respectively. [10\%]
ii. Clock-wise rotation about the origin with an angle α.
iii. Reflection about X axis.
iv. Reflection about Y axis.
(b) i. Show that the following matrix for reflection about a line with slope s and y inte: $(0, c)$

$$
\mathrm{M}_{\mathrm{L}}=\frac{1}{s^{2}+1}\left[\begin{array}{ccc}
1-s^{2} & 2 s & -2 c s \\
2 s & s^{2}-1 & 2 c \\
0 & 0 & s^{2}+1
\end{array}\right]
$$

ii. Reflect a diamond-shaped polygon whose vertices are $\mathrm{A}(-1,0), \mathrm{B}(0,-2), \mathrm{C}(1,0)$ $\mathrm{D}(0,2)$ about:
α. The horizontal line $\mathrm{y}=2$,
β. The vertical line $x=2$, and
γ. The line $y=x+2$.
3. (a) Define the terms window and viewport in relation to computer graphics.
(b) Write down the Liang-Barsky Line clipping method. -. "
(c) Let W be a window whose bottom-left corner is $(-3,1)$ the the top right corner is and $I J$ be a straight line with $I=(-4,2)$ and $J=\left(-1_{4}^{\prime}, 7\right)$. Apply the above algor to clip $I J$ against W.
(d) Explain clearly how you would use the Sutherland-Hodgeman polgon clipping meth clip the polygon $A B C D E$ against the window $P Q R S$. The coordinates of the pol are $A(80,200), B(220,120), C(150,100), D(100,30)$, and $E(10,120)$. Coordinat the window are $P(200,50), Q(200,150), R(50,150)$, and $S(50,50)$. Find the coordi of all vertices of the clipped polygon.
4. (a) Describe briefly the orthographic parallel projection of an object on to $X Y$-plane, derive the corresponding projection matrix.
(b) Consider the object formed by lines $A B, B C, C D, D A, A E, B E, C E, D E, A F, B F$ and $D F$; where $A(0,0,0), B(200,0,0), C(200,0,100), D(0,0,100), E(100,300$
$F(100,200,50)$. Apply your matrix to find the orthographic parallel projection of the object on $X Y$-plane, and draw the projection.
(c) Give the corresponding matrices (in homogeneous system) for each of the following three dimensional transformations in computer graphics.
i. Translation with distances $d x, d y$, and $d z$ for the x, y, and z co-ordinates, respectively.
ii. Counter clock-wise rotation about x axis with the angle α.
iii. Counter clock-wise rotation about y axis with the angle β.
(d) Transform the given homogeneous co-ordinate point $P[3,2,1]$ by the following sequence of operations:
i. Translate by $(-1,-1,-1)$ for the x, y, and z co-ordinates, respectively.
ii. Rotate by $+30^{\circ}$ about x-axis and $+45^{\circ}$ about y axis.
iii. Find the final position of P after the operations (i) and (ii).

