EASTERN UNIVERSITY, SRI LANKA

DEPARTMENT OF MATHEMATICS

THIRD EXAMINATION IN SCIENCE - 2015/2016
SECOND SEMESTER (Oct./Nov., 2018)
PM 301-GROUP THEORY

1. (a) Show that the set

$$
G=\left\{\left.\left(\begin{array}{ll}
a & b \\
0 & d
\end{array}\right) \right\rvert\, a d \neq 0\right\}
$$

forms a group under the matrix multiplication, whêre $a, b, d \in \mathbb{Q}$, the set of rational numbers.
(b) An element a is called an idempotent element if $a * a=a$. binary operation $*$ has exactly one idempotent element.
(c) If $a^{2}=e$ for all elements a in a group G, then show that G is abelian.
(d) Let a and b are commutative elements of a group G. Using the mathematical induction or otherwise, prove that $(a b)^{n}=a^{n} b^{n}$ for each positive integer n.
2. (a) Prove that a nonempty subset H of a group G is a subgroup of G if and only if
i. $a, b \in H$ implies that $a b \in H$,
ii. $a \in H$ implies that $a^{-1} \in H$.
(b) Let G be a group and a be a fixed element of G. Prove the following:
i. the centralizer

$$
C(a)=\{g \in G \mid g a=a g\}
$$

is a subgroup of G,
ii. For any $a \in G, C(a)=C\left(a^{-1}\right)$.
3. (a) Prove that every cyclic group is abelian.
(b) Find the orders of each subgroup of the cyclic group \mathbb{Z}_{24}. List every generator of subgroups of order 6 in \mathbb{Z}_{24}.
(c) Let G be a group and define a map $\lambda_{g}: G \longrightarrow G$ by $\lambda_{g}(a)=g a$. Prove that λ_{g} permutation of G.
(d) Express the following permutations of $\{1,2,3,4,5,6,7,8\}$ as a product of dis cycles and then as a product of transpositions.
i. $\left(\begin{array}{llllllll}1 & 2 & 3 & 4 & 5 & 6 & 7 & 8 \\ 8 & 2 & 6 & 3 & 7 & 4 & 5 & 1\end{array}\right)$
ii. $\left(\begin{array}{llllllll}1 & 2 & 3 & 4 & 5 & 6 & 7 & 8 \\ 3 & 6 & 4 & 1 & 8 & 2 & 5 & 7\end{array}\right)$
4. (a) Let $\phi: G \rightarrow G^{\prime}$ be a homomorphism between the groups G and G^{\prime}. Prove that is the identity element of G, then $\phi(e)$ is the identity element of G^{\prime}.
(b) Which of the following maps are homomorphisms? If the map is a homomorptn find it's kernel.
i. $\phi: \mathbb{R}^{*} \longrightarrow G L_{2}(\mathbb{R})$ define by $\phi(a)=\left(\begin{array}{ll}1 & 0 \\ 0 & a\end{array}\right)$,
ii. $\phi: \mathbb{R} \longrightarrow G L_{2}(\mathbb{R})$ define by $\phi(a)=\left(\begin{array}{ll}1 & 0 \\ a & 1\end{array}\right), \quad$,
where $\mathbb{R}^{*}=\mathbb{R}-\{0\}$ and $G L_{2}(\mathbb{R})$ is a group of 2×2 matrices in \mathbb{P}^{1}
(c) If $\phi: G \rightarrow H$ is a group homomorphism and G is abelian, prove that $\phi(G)$ abelian.
5. (a) Let H be a subgroup of a group G and $g \in G$. Prove that $H g=H$ if and $g \in H$.
(b) If H and K are subgroups of a group G and $g \in G$, show that $g(H \cap K)=g H$
(c) State the Lagrange's theorem. Using the Lagrange's theorem or otherwise fin index of the following subgroups:
i. the index of $\langle 3\rangle$ in \mathbb{Z}_{24},
ii. the index of $\langle 18\rangle$ in \mathbb{Z}_{36}.
(d) Find the partition of Z_{12} into cosets of the subgroup $\langle 2\rangle$.
6. (a) Let H be a subgroup of a group G. Prove that if G is abelian, then G / H is abelian.
(b) Let T be the group of nonsingular upper triangular 2×2 matrices with entries in \mathbb{R}; that is, matrices of the form

$$
\left[\begin{array}{ll}
a & b \\
0 & c
\end{array}\right]
$$

where $a, b, c \in \mathbb{R}$ and $a c \neq 0$. Let U consists of matrices of the form

$$
\left[\begin{array}{ll}
1 & x \\
0 & 1
\end{array}\right],
$$

where $x \in \mathbb{R}$. Prove the following:
i. U is a subgroup of T,
ii. U is abelian,
iii. U is normal in T,
iv. T / U is abelian.

