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1. (a) Define a group. (10 Marks)
(b) Let G be a group and let a, b,c € G. Prove the following:
i. if ab = ac, then b = c, .,
ii. if ac = bc, then a = b. : . (20 Marks)

(c) Let S be the set of all real numbers except —1. Define an operation * on S by
axb=a+b+ab

for each a,b € S. Show that (S, *) is a group.

Is S an abelian group with this operation? Justify your answer. « (40 Marks)

(d) Let G be g group and suppose that (ab)? = a?b? for all a,b € G. Show that G is an
abelain group. (80 Marks)

2. (a) Define a cyclic group. (10 Marks)
(b) Prove that if a is a generator of a cyclic group, then a~! is also a generator of that
group. (20 Marks)

(c) Let G = {1,2,3,4} be a group with the binary operation “multiplication modulo 5”.
By using the Cayley’s table or otherwise, show that G is a group with this operation.

Also show that G is cyclic and find all the generators of G. (40 Marks)
(d) Find all the cyclic subgroups generated by the elements (1,2,3), (1,3,2) and (2,3)
in the group Ss. (80 Marks)
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(a) Let H be a subgroup of a group G. Prove the following:

i. The identity element of H is the same of the identity element of G. (20 Marks)

ii. The inverse of an element ¢ in H is the same as the inverse when we consider a
in G. (20 Marks)

(b) Let H = {2* | k € Z}. Show that H is a subgroup of Q*, where Q* is the group of
non-zero rational numbers with the usual multiplication.

Find the identity element of H and the inverse of an element a in H and verify the
results in (a) above. (40 Marks)

(c) Let H={B € S5 | B(1) = 1 and 3(3) = 3}. Prove that H is a subgroup of Ss.
(20 Marks)

(a) Let ¢ : G — G’ be a homomorphism between the groups G and G’. Prove that if
K is a subgroup of G, then ¢(K) is a subgroup of G'. (80 Marks)

(b) Let R* be the group of non-zero real numbers with usual multiplication as the binary
operation. Define a mapping ¢ : R* — R* by ¢(x) = 2? for each x € R*. Show
that ¢ is a homomorphism and find the kernel of @. .. " (30 Marks)

(c) Let G be a group and let g € G. Let ¢, : G — G be d‘eﬁned‘by dg(z) = gz for
z € . For which g € G is ¢4 a homomorphism? . (20 Marks)

(d) An automorphism of a group G is an isomorphism with itself. Show that the map
ig : G — G defined by i,(z) = gzg™! is an automorphism of G, where G js a group
and g,z € G. (20 Marks)
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(a) Define the leffcosets of a subgroup in a group. (10 Marks)

(b) Let H be a subgroup of a group G. Prove that the left cosets of H in G partition G,
that is, the group G is the disjoint union of the left cosets of H in G. (30 Marks)

(c) Find the partition of Zg into the left cosets of the subgroup H = {0,3}. (80 Marks)

(d) Find all cosets of the subgroup (4) in the group Z;. Also find the index of (4) in
Zys. (30 Marks)
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(a) Let N bea normal subgroup of a group G. Prove that the set G/N = {aN|a€G }
of left cosets of NV in G is a group under the operation (aN)(bN ) = abN defined on
it (this group is called the factor group of G and N). (30 Marks)

(b) If G is abelian, prove that G/N is also abelian. (20 Marks)

(c) Let G = Zs be a group with addition modulo 18 and N = {0,6,12} be a normal
subgroup of G. Find the factor group of G and N. (30 Marks)

(d) Let G be the set of matrices of the form B (ﬂ and let H be the set the matrices

a 0
of the form [0 J ,

and H is a subgroup of G, then show that H is a normal subgroup of G.(20 Marks)

where a,b € R. If G is a group under the matrix multiplication



