EASTERN UNIVERSITY, SRI LANKA
DEPARTMENT OF MATHEMATICS
THIRD EXAMINATION IN SCIENCE - 2014/2015
SECOND SEMESTER (Dec., 2017/Jan., 2018)
PM 301 - GROUP THEORY

1. (a) Define a group.
(10 Marks)
(b) Let G be a group and let $a, b, c \in G$. Prove the following:
i. if $a b=a c$, then $b=c$,
ii. if $a c=b c$, then $a=b$.
(20 Marks)
(c) Let S be the set of all real numbers except -1 . Define an operation $*$ on S by

$$
a * b=a+b+a b
$$

for each $a, b \in S$. Show that $(S, *)$ is a group.
Is S an abelian group with this operation? Justify your answer.
(d) Let G be \neq group and suppose that $(a b)^{2}=a^{2} b^{2}$ for all $a, b \in G$. Show that G is an abelain group.
2. (a) Define a cyclic group.
(10 Marks)
(b) Prove that if a is a generator of a cyclic group, then a^{-1} is also a generator of that group.
(20 Marks)
(c) Let $G=\{1,2,3,4\}$ be a group with the binary operation "multiplication modulo 5". By using the Cayley's table or otherwise, show that G is a group with this operation. Also show that G is cyclic and find all the generators of G.
(40 Marks)
(d) Find all the cyclic subgroups generated by the elements $(1,2,3),(1,3,2)$ and $(2,3)$ in the group S_{3}.
(30 Marks)
3. (a) Let H be a subgroup of a group G. Prove the following:
i. The identity element of H is the same of the identity element of G. (20 Marks)
ii. The inverse of an element a in H is the same as the inverse when we consider a in G.
(20 Marks)
(b) Let $H=\left\{2^{k} \mid k \in \mathbb{Z}\right\}$. Show that H is a subgroup of \mathbb{Q}^{*}, where \mathbb{Q}^{*} is the group of non-zero rational numbers with the usual multiplication.
Find the identity element of H and the inverse of an element a in H and verify the results in (a) above.
(40 Marks)
(c) Let $H=\left\{\beta \in S_{5} \mid \beta(1)=1\right.$ and $\left.\beta(3)=3\right\}$. Prove that H is a subgroup of S_{5}.
(20 Marks)
4. (a) Let $\phi: G \longrightarrow G^{\prime}$ be a homomorphism between the groups G and G^{\prime}. Prove that if K is a subgroup of G, then $\phi(K)$ is a subgroup of G^{\prime}.
(30 Marks)
(b) Let \mathbb{R}^{*} be the group of non-zero real numbers with usual multiplication as the binary operation. Define a mapping $\phi: \mathbb{R}^{*} \longrightarrow \mathbb{R}^{*}$ by $\phi(x)=x^{2}$ for each $x \in \mathbb{R}^{*}$. Show that ϕ is a homomorphism and find the kernel of ϕ. . " (30 Marks)
(c) Let G be a group and let $g \in G$. Let $\phi_{g}: G \rightarrow G$ be defined by $\phi_{g}(x)=g x$ for $x \in G$. For which $g \in G$ is ϕ_{g} a homomorphism?
(20 Marks)
(d) An automorphism of a group G is an isomorphism with itself. Show that the map $i_{g}: G \rightarrow G$ defined by $i_{g}(x)=g x g^{-1}$ is an automorphism of G, where G is a group and $g, x \in G$.
5. (a) Define the lefl cosets of a subgroup in a group.
(b) Let H be a subgroup of a group G. Prove that the left cosets of H in G partition G, that is, the group G is the disjoint union of the left cosets of H in G. (30 Marks)
(c) Find the partition of \mathbb{Z}_{6} into the left cosets of the subgroup $H=\{0,3\}$. (30 Marks)
(d) Find all cosets of the subgroup $\langle 4\rangle$ in the group Z_{12}. Also find the index of $\langle 4\rangle$ in Z_{12}.
(30 Marks)
(a) Let N be a normal subgroup of a group G. Prove that the set $G / N=\{a N \mid a \in G\}$ of left cosets of N in G is a group under the operation $(a N)(b N)=a b N$ defined on it (this group is called the factor group of G and N).
(b) If G is abelian, prove that G / N is also abelian.
(c) Let $G=\mathbb{Z}_{18}$ be a group with addition modulo 18 and $N=\{0,6,12\}$ be a normal subgroup of G. Find the factor group of G and N.
(d) Let G be the set of matrices of the form $\left[\begin{array}{ll}a & 0 \\ 0 & b\end{array}\right]$ and let H be the set the matrices of the form $\left[\begin{array}{ll}a & 0 \\ 0 & 1\end{array}\right]$, where $a, b \in \mathbb{R}$. If G is a group under the matrix multiplication and H is a subgroup of G, then show that H is a normal subgroup of G (20 Marks)

