

EASTERN UNIVERSITY, SRI LANKA DEPARTMENT OF MATHEMATICS THIRD EXAMINATION IN SCIENCE - 2014/2015 SECOND SEMESTER (Dec., 2017/Jan., 2018) PM 301 - GROUP THEORY

swer all questions

Time : Three hours

(10 Marks)

(20 Marks)

🥤 (40 Marks)

(10 Marks)

- 1. (a) Define a group.
 - (b) Let G be a group and let $a, b, c \in G$. Prove the following:
 - i. if ab = ac, then b = c,
 - ii. if ac = bc, then a = b.
 - (c) Let S be the set of all real numbers except -1. Define an operation * on S by

a * b = a + b + ab

for each $a, b \in S$. Show that (S, *) is a group. Is S an abelian group with this operation? Justify your answer.

- (d) Let G be a group and suppose that $(ab)^2 = a^2b^2$ for all $a, b \in G$. Show that G is an abelain group. (30 Marks)
- 2. (a) Define a cyclic group.
 - (b) Prove that if a is a generator of a cyclic group, then a^{-1} is also a generator of that group. (20 Marks)
 - (c) Let $G = \{1, 2, 3, 4\}$ be a group with the binary operation "multiplication modulo 5". By using the Cayley's table or otherwise, show that G is a group with this operation. Also show that G is cyclic and find all the generators of G. (40 Marks)
 - (d) Find all the cyclic subgroups generated by the elements (1, 2, 3), (1, 3, 2) and (2, 3)in the group S_3 . (30 Marks)

1

- 3. (a) Let H be a subgroup of a group G. Prove the following:
 - i. The identity element of H is the same of the identity element of G. (20 Marks)
 - ii. The inverse of an element a in H is the same as the inverse when we consider a in G. (20 Marks)
 - (b) Let H = {2^k | k ∈ Z}. Show that H is a subgroup of Q*, where Q* is the group of non-zero rational numbers with the usual multiplication.
 Find the identity element of H and the inverse of an element a in H and verify the results in (a) above. (40 Marks)
 - (c) Let $H = \{\beta \in S_5 \mid \beta(1) = 1 \text{ and } \beta(3) = 3\}$. Prove that H is a subgroup of S_5 .

(20 Marks)

- 4. (a) Let $\phi: G \longrightarrow G'$ be a homomorphism between the groups G and G'. Prove that if K is a subgroup of G, then $\phi(K)$ is a subgroup of G'. (30 Marks)
 - (b) Let \mathbb{R}^* be the group of non-zero real numbers with usual multiplication as the binary operation. Define a mapping $\phi : \mathbb{R}^* \longrightarrow \mathbb{R}^*$ by $\phi(x) = x^2$ for each $x \in \mathbb{R}^*$. Show that ϕ is a homomorphism and find the kernel of ϕ .
 - (c) Let G be a group and let $g \in G$. Let $\phi_g : G \to G$ be defined by $\phi_g(x) = gx$ for $x \in G$. For which $g \in G$ is ϕ_g a homomorphism? (20 Marks)
 - (d) An automorphism of a group G is an isomorphism with itself. Show that the map $i_g: G \to G$ defined by $i_g(x) = gxg^{-1}$ is an automorphism of G, where G is a group and $g, x \in G$.
- 5. (a) Define the *left cosets* of a subgroup in a group. (10 Marks)
 - (b) Let H be a subgroup of a group G. Prove that the left cosets of H in G partition G, that is, the group G is the disjoint union of the left cosets of H in G. (30 Marks)
 - (c) Find the partition of \mathbb{Z}_6 into the left cosets of the subgroup $H = \{0, 3\}$. (30 Marks)
 - (d) Find all cosets of the subgroup $\langle 4 \rangle$ in the group Z_{12} . Also find the index of $\langle 4 \rangle$ in Z_{12} . (30 Marks)

- (a) Let N be a normal subgroup of a group G. Prove that the set $G/N = \{aN \mid a \in G\}$ of left cosets of N in G is a group under the operation (aN)(bN) = abN defined on it (this group is called the factor group of G and N). (30 Marks)
- (b) If G is abelian, prove that G/N is also abelian.
- (c) Let $G = \mathbb{Z}_{18}$ be a group with addition modulo 18 and $N = \{0, 6, 12\}$ be a normal subgroup of G. Find the factor group of G and N. (30 Marks)

(20 Marks)

(d) Let G be the set of matrices of the form $\begin{bmatrix} a & 0 \\ 0 & b \end{bmatrix}$ and let H be the set the matrices of the form $\begin{bmatrix} a & 0 \\ 0 & 1 \end{bmatrix}$, where $a, b \in \mathbb{R}$. If G is a group under the matrix multiplication and H is a subgroup of G, then show that H is a normal subgroup of G.(20 Marks)