

EASTERN UNIVERSITY, SRI LANKA DEPARTMENT OF MATHEMATICS THIRD EXAMINATION IN SCIENCE - 2014/2015 SECOND SEMESTER (October, 2017) PM 301 - GROUP THEORY

Answer all questions		Time : Three hours
1.	(a) Define the term group.(b) In a group, prove the following:	(10 Marks)
	i. the identity element is unique,ii. the inverse of an element is unique,iii. the cancellation laws hold.	(20 Marks) (20 Marks) (20 Marks)
	(c) Let $G = \{a + b\sqrt{2} \mid a, b \in \mathbb{Q}\}$. Show that G is a group unc	der addition. (30 Marks)
2.	(a) Let G be a group and let H be a subset of G. Prove that and only if $ab^{-1} \in H$ for each $a, b \in H$.	t H is a subgroup of G if (30 Marks)
	(b) Show that the identity element of a group G and the identity groups of G are the same.	ntity element of the sub- (20 Marks)
	(c) Show that the inverse of an element of a subgroup and the regarded as a member of the group are the same.	he inverse of the element (20 Marks)
	(d) Let G be a group and let $a \in G$. Then show that $H = \{a of G.$	$a^n \mid n \in \mathbb{Z}$ is a subgroup (30 Marks)
3.	 (a) i. Define the term cyclic group of a group. ii. Show that every cyclic is abelian. iii. Find the generators of the groups Z and Z₆. 	(10 Marks) (20 Marks) (20 Marks)

1

i. Let $A = \{1, 2, \dots, n\}$ and let S_n be the set of all permutations on A. Show that (b)(30 Marks) S_n is group under permutation multiplication. (20 Marks) ii. Express the following permutations as product of cycles: $\sigma = \begin{pmatrix} 1 & 2 & 3 & 4 & 5 & 6 & 7 & 8 \\ 3 & 8 & 6 & 7 & 4 & 1 & 5 & 2 \end{pmatrix}, \quad \mu = \begin{pmatrix} 1 & 2 & 3 & 4 & 5 & 6 \\ 6 & 5 & 2 & 4 & 3 & 1 \end{pmatrix}.$ (a) Let $\phi: G \to G'$ be an homomorphism between the groups G and G'. Then, prove 4. the following: (20 Marks) i. if e is the identity of G, then $\phi(e)$ is the identity of G', ii. for any $g \in G$, $\phi(g^{-1}) = \phi(g)^{-1}$, (20 Marks) iii, if K is a subgroup of G, then $\phi(K)$ is a subgroup of G'. (30 Marks) (30 Marks) (b) Show that the following mappings are homomorphisms: i. $\phi : \mathbb{Z} \to G$ defined by $\phi(n) = g^n$, where G is a group and $g \in G$. ii. $\rho: G \to H$ defined by $\phi(x) = e^x$, where $G = \mathbb{R}$ is a group under addition and $H = \mathbb{R}^+$ is a group under multiplication. 5. (a) Let H be a subgroup of a group G and $a, b \in G$. Then prove the following: i. if $a \in H$ then Ha = H, (20 Marks) ii. if $ab^{-1} \in H$ then Ha = Hb. (20 Marks) (b) Let H be a subgroup of G and let $g \in G$. Show that the map $\Phi: H \to gH$ defined by $\Phi(h) = gh$ is bijective. (30 Marks) (c) Find the left cosets of the following subgroups H in the groups G: (30 Marks) i. if $H = 3\mathbb{Z}$ and $G = \mathbb{Z}$, ii. if $H = \{0, 3\}$ and $G = Z_6$, iii. if $H = \{(1), (123), (132)\}$ and $G = S_3$ (10 Marks) 6. (a) i. Define the *factor group* of a group. (30 Marks) ii. Prove that a factor group of a cyclic group is cyclic. (10 Marks) iii. Find the factor group $\mathbb{Z}/3\mathbb{Z}$. (10 Marks) (b) i. Define the Lagrange's theorem. ii. If G is a finite group and $q \in G$, then prove that the order of g must divide the (20 Marks) order of G. iii. Let the order of the group G be p, where p is a prime. If $g \neq e$ is an element of (20 Marks) G, then prove that G is a cyclic group generated by g.

2