EASTERN UNIVERSITY, SRI LANKA
DEPARTMENT OF MATHEMATICS
THIRD EXAMINATION IN SCIENCE - 2014/2015
SECOND SEMESTER (October, 2017)
PM 301 - GROUP THEORY

Answer all questions
Time: Three hours

1. (a) Define the term group.
(10 Marks)
(b) In a group, prove the following:
i. the identity element is unique,
ii. the inverse of an element is unique,
(20 Marks)
iii. the cancellation laws hold.
(20 Marks)
(c) Let $G=\{a+b \sqrt{2} \mid a, b \in \mathbb{Q}\}$. Show that G is a groyp under addition.
(30 Marks)
2. (a) Let G be a group and let H be a subset of G. Prove that is a subgroup of G if and only if $a b^{-1} \in H$ for each $a, b \in H$:
(30 Marks)
(b) Show that the identity element of a group G and the identity element of the subgroups of G are the same.
(20 Marks)
(c) Show that the inverse of an element of a subgroup and the inverse of the element regarded as a member of the group are the same.
(20 Marks)
(d) Let G be a group and let $a \in G$. Then show that $H=\left\{a^{n} \mid n \in \mathbb{Z}\right\}$ is a subgroup of G.
(30 Marks)
3. (a) i. Define the term cyclic group of a group.
(10 Marks)
ii. Show that every cyclic is abelian.
(20 Marks)
iii. Find the generators of the groups \mathbb{Z} and \mathbb{Z}_{6}.
(20 Marks)
(b) i. Let $A=\{1,2, \cdots, n\}$ and let S_{n} be the set of all permutations on A. Show that S_{n} is group under permutation multiplication.
ii. Express the following permutations as product of cycles:

$$
\sigma=\left(\begin{array}{llllllll}
1 & 2 & 3 & 4 & 5 & 6 & 7 & 8 \\
3 & 8 & 6 & 7 & 4 & 1 & 5 & 2
\end{array}\right), \quad \mu=\left(\begin{array}{llllll}
1 & 2 & 3 & 4 & 5 & 6 \\
6 & 5 & 2 & 4 & 3 & 1
\end{array}\right) .
$$

4. (a) Let $\phi: G \rightarrow G^{\prime}$ be an homomorphism between the groups G and G^{\prime}. Then, prove the following:
i. If e is the identity of G, then $\phi(e)$ is the identity of G^{\prime},
ii. for any $g \in G, \phi\left(g^{-1}\right)=\phi(g)^{-1}$,
iii. if K is a subgroup of G, then $\phi(K)$ is a subgroup of G^{\prime}.
(b) Show that the following mappings are homomorphisms:
i. $\phi: \mathbb{Z} \rightarrow G$ defined by $\phi(n)=g^{n}$, where G is a group and $g \in G$.
ii. $\rho: G \rightarrow H$ defined by $\phi(x)=e^{x}$, where $G=\mathbb{R}$ is a group under addition and $H=\mathbb{R}^{+}$is a group under multiplication.
5. (a) Let H be a subgroup of a group G and $a, b \in G$. Then prove the following:
i. if $a \in H$ then $H a=H$,
(20 Marks)
ii. if $a b^{-1} \in H$ then $H a=H b$.
(20 Marks)
(b) Let H be a subgroup of G and let $g \in G$. Show that the map $\Phi: H \rightarrow g H$ defined by $\Phi(h)=g h$ is bijective.
(30 Marks)
(c) Find the left cosets of the following subgroups H in the groups G :
(30 Marks)
i. if $H=3 \mathbb{Z}$ and $G=\mathbb{Z}$,
ii. if $H=\{0,3\}$ and $G=Z_{6}$,
iii. if $H=\{(1),(123),(132)\}$ and $G=S_{3}$
6. (a) i. Define the factor group of a group.
(10 Marks)
ii. Prove that a factor group of a cyclic group is cyclic.
(30 Marks)
iii. Find the factor group $\mathbb{Z} / 3 \mathbb{Z}$.
(10 Marks)
(b) i. Define the Lagrange's theorem.
(10 Marks)
ii. If G is a finite group and $g \in G$, then prove that the order of g must divide the order of G.
(20 Marks)
iii. Let the order of the group G be p, where p is a prime. If $g \neq e$ is an element of G, then prove that G is a cyclic group generated by g.
(20 Marks)
