EASTERN UNIVERSITY, SRI LANKA
DEPARTMENT OF MATHEMATICS

THIRD EXAMINATION IN SCIENCE - 2016/2017

FIRST SEMESTER (March/April, 2019)

PM 302-COMPLEX ANALYSIS

1. (a) Let $A \subseteq \mathbb{C}$ be an open set and le; $f: A \rightarrow \mathbb{C}$. Define what is meant by f being analytic at $z_{0} \in A$.
(b) Let the function $f(z)=u(x, y)+i v(x, y)$ be defined throughout some ϵ-neighborhood of a point $z_{0}=x_{0}+i y_{0}$. Suppose that the first order partial derivatives of the functions u and v with respect to x and y exist everywhere in that neighborhood and that they are continuous at $\left(x_{0}, y_{0}\right)$. Prove that, if those partial derivatives satisfy the Cauchy-Riemann equations

$$
\frac{\partial u}{\partial x}=\frac{\partial v}{\partial y} ; \quad \frac{\partial u}{\partial y}=-\frac{\partial v}{\partial x}
$$

at $z_{0}=x_{0}+i y_{0}$, then the derivative $f^{\prime}\left(z_{0}\right)$ exists.
(c) i. Define what is meant by the function, $h: \mathbb{R}^{2} \rightarrow \mathbb{R}$, being harmonic.
ii. Obtain a harmonic conjugate $v(x, y)$ of a harmonic function $u(x, y)=\frac{x}{x^{2}+y^{2}}$ such that $f(x)=u(x, y)+i v(x, y)$ is analytic.
2. (a) Let $D(a ; r):=\{z \in \mathbb{C}:|z-a|<r\}$ denotes the open disc with center $a \in \mathbb{C}$ and radius $r>0$ and let f be analytic on $D(a ; r)$ and $0<s<r$. Prove Cauchy's Integral Formula,

$$
f\left(z_{0}\right)=\frac{1}{2 \pi i} \int_{C(a ; s)} \frac{f(z)}{z-z_{0}} d z, \quad \text { for } \quad z_{0} \in D(a ; s)
$$

where $C(a ; s)$ denotes the circle with center a and radius $s>0$.
(b) By using the Cauchy's Integral Formula compute the following integrals:
i. $\int_{C(0 ; 2)} \frac{\sin z}{z+1} d z$;
ii. $\int_{C(0 ; 2)} \frac{z e^{z}}{\left(z^{2}+i\right)} d z$.
3. (a) State the Mean-Value Property for Analytic Function. - "
(b) i. Define what is meant by the function $f: \mathbb{C} \rightarrow \mathbb{C}$ being entinge.
ii. Prove Liouville's Theorem: If f is entire and

$$
\frac{\max \{|f(t)|:|t|=r\}}{r} \rightarrow 0, \text { as } r \rightarrow \infty,
$$

then f is constant.
(State any results you use without proof).
iii. Prove the Maximum-Modulus Theorem: Let f be analytic in an open connected set A. Let γ be a simple closed path that is contained, together with its inside, in A. Let

$$
M:=\sup _{z \in \gamma}|f(z)| .
$$

If there exist z_{0} inside γ such that $\left|f\left(z_{0}\right)\right|=M$, then f is constant throughout A. Consequently, if f is not constant in A, then

$$
|f(z)|<M \quad \text { for all } z \text { inside } \gamma
$$

a) Let $\delta>0$ and let $f: D^{*}\left(z_{0} ; \delta\right) \rightarrow \mathbb{C}$, where $D^{*}\left(z_{0} ; \delta\right):=\left\{z: 0<\left|z-z_{0}\right|<\delta\right\}$.

Define what is meant by f has a pole of order m at z_{0}.
b) Prove that if $\operatorname{ord}\left(f, z_{0}\right)=m$ then $f(z)=\left(z-z_{0}\right)^{m} g(z)$ for all $z \in D^{*}\left(z_{0} ; \delta\right)$, for some $\delta>0$, where g is analytic in $D^{*}\left(z_{0} ; \delta\right):=\left\{z: 0<\left|z-z_{0}\right|<\delta\right\}$ and $g\left(z_{0}\right) \neq 0$.
(c) Find the value of the integral

$$
\int_{C} \frac{z^{2}+1}{(z-2)\left(z^{2}+4\right)}
$$

where C is taken counterclockwise around the circle,
i. $|z-3|=2$;
ii. $|z|=3$.

Let f be a analytic in the upper-half plane $\{z: \operatorname{Im}(z) \geqslant 0\}$, except at finitely many points, none on the real axis. Suppose there exist $M, R>0$ and $\alpha>1$ such that

$$
|f(z)| \leqslant \frac{M}{|z|^{\alpha}}, \quad|z| \geqslant R \quad \text { with } \operatorname{Im}(z) \geqslant 0
$$

Then prove that

$$
I:=\int_{-\infty}^{\infty} f(x) d x
$$

converges (exists) and

$$
I=2 \pi i \times \text { Sum of Residues of } f \text { in the upper half plane. }
$$

Hence evaluate the integral

$$
\int_{-\infty}^{\infty} \frac{x}{\left(x^{2}+1\right)\left(x^{2}+2 x+2\right)} d x
$$

(You may assume without proof the Residue Theorem).
6. (a) State the Principle of Argument Theorem.
(b) Prove Rouche's Theorem: Let γ be a simple closed path in an open starset Suppose that
i. f, g are analytic in A except for finitely many poles, none lying on γ.
ii. f and $f+g$ have finitely many zeros in A.
iii. $|g(z)|<|f(z)|, \quad z \in \gamma$. Then

$$
Z P(f+g ; \gamma)=Z P(f ; \gamma)
$$

where $Z P(f+g ; \gamma)$ and $Z P(f ; \gamma)$ denote the number of zeros - number of pol inside γ of $f+g$ and f respectively, where each is counted as many times as order.
(c) State the Fundamental Theorem of Algebra.
(d) Determine the number of zeros of $p(z)=z^{4}-2 z^{3}+9 z^{2}+z-1$ in the open unit dis $D(0 ; 2)$.

