EASTERN UNIVERSITY, SRI LANKA
DEPARTMENT OF MATHEMATICS
THIRD EXAMINATION IN SCIENCE - 2015/2016
FIRST SEMESTER (May/June, 2018)
PM 302 - COMPLEX ANALYSIS

Answer all questions
Time: Three hours

1. (a) Let $A \subseteq \mathbb{C}$ be an open set and let $f: A \rightarrow \mathbb{C}$. Define what is meant by f being analytic at $z_{0} \in A$.
(b) Let the function $f(z)=u(x, y)+i v(x, y)$ be defined throughout some ϵ-neighborhood of a point $z_{0}=x_{0}+i y_{0}$. Suppose that the first order partial derivatives of the functions u and v with respect to x and y exist everywhere in neighborhood and that they are continuous at $\left(x_{0}, y_{0}\right)$. Prove that, if those partial derivatives satisfy the Cauchy-Riemann equations

$$
\frac{\partial u}{\partial x}=\frac{\partial v}{\partial y} ; \quad \frac{\partial u}{\partial y}=-\frac{\partial v}{\partial x}
$$

at $z_{0}=x_{0}+i y_{0}$, then the derivative $f^{\prime}\left(z_{0}\right)$ exists.
(c) i. Define what is meant by the function $h: \mathbb{R}^{2} \rightarrow \mathbb{R}$ being harmonic.
ii. Obtain a harmonic conjugate $v(x, y)$ of a harmonic function $u(x, y)=\frac{y}{x^{2}+y^{2}}$ such that $f(x)=u(x, y)+i v(x, y)$ is analytic.
2. (a) i. Define what is meant by a path $\gamma:[\alpha, \beta] \rightarrow \mathbb{C}$.
ii. For a path γ and a continuous function $f: \gamma \rightarrow \mathbb{C}$, define $\int_{\gamma} f(z) d z$.
(b) Prove that if $w(t)$ is a continuous complex valued function of t such that $\alpha<t<\beta$, then

$$
\left|\int_{\alpha}^{\beta} w(t) d t\right| \leq \int_{\alpha}^{\beta}|w(t)| d t
$$

(c) Prove that if γ is a path and f be a continuous function on γ, then $|f(z)| \leq M$, for all $z \in \gamma$ and $M \geq 0$ such that $\left|\int_{\gamma} f(z) d z\right| \leq M L$, where $L=\operatorname{Length}(\gamma)$.

Hence show that

$$
\left|\int_{\gamma} \frac{z^{1 / 2}}{z^{2}+1}\right| \leq \frac{3 \sqrt{3} \pi}{8}
$$

where γ is the semi circular path given by $z=3 e^{i \theta},-\frac{\pi}{2} \leq \theta \leq \frac{\pi}{z}$.
3. (a) Let $D(a ; r):=\{z \in \mathbb{C}:|z-a|<r\}$ denotes the open disc with center $a \in \mathbb{C}$ and radius $r>0$ and let f be analytic on $D(a ; r)$ and $0<s<r$. Prove auchy's Integral Formula,

$$
f\left(z_{0}\right)=\frac{1}{2 \pi i} \int_{C(a ; s)} \frac{f(z)}{z-z_{0}} d z, \quad \text { for } \quad z_{0} \in D(a ; s)
$$

where $C(a ; s)$ denotes the circle with center a and radius $s>0$.
(b) Let C be the circle $|z|=3$, described in the positive sense. Show that if

$$
g(w)=\int_{C} \frac{2 z^{2}-z-2}{z-w} d z \quad(|w| \neq 3)
$$

then $g(2)=8 \pi i$. Find the value of $g(w)$ when $|w|>3$?
4. (a) Let $\delta>0$ and let $f: D^{*}\left(z_{0} ; \delta\right) \rightarrow \mathbb{C}$, where $D^{*}\left(z_{0} ; \delta\right):=\left\{z: 0<\left|z-z_{0}\right|<\delta\right\}$. Define what is meant by f has a pole of order m at z_{0}.
(b) Prove that if $\operatorname{ord}\left(f, z_{0}\right)=m$ then $f(z)=\left(z-z_{0}\right)^{m} g(z), \forall z \in D^{*}\left(z_{0} ; \delta\right)$, for some $\delta>0$, where g is analytic in $D^{*}\left(z_{0} ; \delta\right):=\left\{z: 0<\left|z-z_{0}\right|<\delta\right\}$ and $g\left(z_{0}\right) \neq 0$.
(c) Prove that if f has a pole of order m at z_{0}, then

$$
\operatorname{Res}\left(f ; z_{0}\right)=\frac{1}{(m-1)!} \lim _{z \rightarrow z_{0}}\left\{\frac{d^{m-1}}{d z^{m-1}} h(z)\right\}, \text { where } h(z)=\left(z-z_{0}\right)^{m} f(z)
$$

Show that the residue of the function $f(z)=\frac{\log z}{\left(z^{2}+1\right)^{2}}$ at i is $\frac{\pi+2 i}{8}$.
5. Let f be a analytic in the upper-half plane $\{z: \operatorname{Im}(z) \geqslant 0\}$, except at finitely many points, none on the real axis. Suppose there exist $M, R>0$ and $\alpha>1$ such that

$$
|f(z)| \leqslant \frac{M}{|z|^{\alpha}}, \quad|z| \geqslant R \quad \text { with } \operatorname{Im}(z) \geqslant 0
$$

Then prove that

$$
I:=\int_{-\infty}^{\infty} f(x) d x
$$

converges (exists) and

$$
I=2 \pi i \times \text { Sum of Residues of } f \text { in the upper half plane. }
$$

Hence evaluate the integral

$$
\int_{-\infty}^{\infty} \frac{x^{2}}{\left(x^{2}+1\right)\left(x^{2}+9\right)} d x
$$

(You may assume without proof the Residue Theorem).
6. (a) State the Principle of Argument Theorem.
(b) Prove Rouche's Theorem: Let γ be a simple closed path in an open starset A. Suppose that
i. f, g are analytic in A except for finitely many poles, none lying on γ.
ii. f and $f+g$ have finitely many zeros in A.
iii. $|g(z)|<|f(z)|, \quad z \in \gamma$. Then

$$
Z P(f+g ; \gamma)=Z P(f ; \gamma)
$$

where $Z P(f+g ; \gamma)$ and $Z P(f ; \gamma)$ denotes the excess number of zeros over poles of $f+g$ and f inside γ respectively, where each is counted as many times as its order.
(c) State the Fundamental Theorem of Algebra.
(d) Determine the number of zeros of $z^{4}-2 z^{3}+9 z^{2}+z-1$ in the circle $|z|=2$.

