

DEPARTMENT OF MATHEMATICS

$\frac{\text{THIRD EXAMINATION IN SCIENCE - 2015/2016}}{\text{FIRST SEMESTER (May/June, 2018)}}$

PM 302 - COMPLEX ANALYSIS

Answer all questions

Time: Three hours

- 1. (a) Let $A \subseteq \mathbb{C}$ be an open set and let $f: A \to \mathbb{C}$. Define what is meant by f being analytic at $z_0 \in A$.
 - (b) Let the function f(z) = u(x,y) + iv(x,y) be defined throughout some ϵ -neighborhood of a point $z_0 = x_0 + iy_0$. Suppose that the first order partial derivatives of the functions u and v with respect to x and y exist everywhere in that neighborhood and that they are continuous at (x_0, y_0) . Prove that, if those partial derivatives satisfy the Cauchy-Riemann equations

$$\frac{\partial u}{\partial x} = \frac{\partial v}{\partial y}; \quad \frac{\partial u}{\partial y} = -\frac{\partial v}{\partial x}$$

at $z_0 = x_0 + iy_0$, then the derivative $f'(z_0)$ exists.

- (c) i. Define what is meant by the function $h: \mathbb{R}^2 \to \mathbb{R}$ being harmonic.
 - ii. Obtain a harmonic conjugate v(x,y) of a harmonic function $u(x,y) = \frac{y}{x^2 + y^2}$ such that f(x) = u(x,y) + iv(x,y) is analytic.

- 2. (a) i. Define what is meant by a **path** $\gamma: [\alpha, \beta] \to \mathbb{C}$. ii. For a path γ and a continuous function $f: \gamma \to \mathbb{C}$, define $\int_{\gamma} f(z) \ dz$.
 - (b) Prove that if w(t) is a continuous complex valued function of t such that $\alpha < t < \beta$, then

$$\left| \int_{\alpha}^{\beta} w(t) \ dt \right| \le \int_{\alpha}^{\beta} |w(t)| \ dt.$$

(c) Prove that if γ is a path and f be a continuous function on γ , then $|f(z)| \leq M$, for all $z \in \gamma$ and $M \geq 0$ such that $\left| \int_{\gamma} f(z) dz \right| \leq ML$, where $L = \text{Length}(\gamma)$.

$$\left| \int_{\gamma} \frac{z^{1/2}}{z^2 + 1} \right| \le \frac{3\sqrt{3}\pi}{8},$$

where γ is the semi circular path given by $z = 3e^{i\theta}, -\frac{\pi}{2} \le \theta \le \frac{\pi}{2}$.

3. (a) Let $D(a;r):=\{z\in\mathbb{C}:|z-a|< r\}$ denotes the open disc with center $a\in\mathbb{C}$ and radius r>0 and let f be analytic on D(a;r) and 0< s< r. Prove **Gauchy**'s Integral Formula,

$$f(z_0) = \frac{1}{2\pi i} \int_{C(a;s)} \frac{f(z)}{z - z_0} dz$$
, for $z_0 \in D(a;s)$,

where C(a; s) denotes the circle with center a and radius s > 0.

(b) Let C be the circle |z|=3, described in the positive sense. Show that if

$$g(w) = \int_C \frac{2z^2 - z - 2}{z - w} dz \quad (|w| \neq 3),$$

then $g(2) = 8\pi i$. Find the value of g(w) when |w| > 3?

- 4. (a) Let $\delta > 0$ and let $f: D^*(z_0; \delta) \to \mathbb{C}$, where $D^*(z_0; \delta) := \{z: 0 < |z z_0| < \delta\}$. Define what is meant by f has a pole of order m at z_0 .
 - (b) Prove that if $\operatorname{ord}(f, z_0) = m$ then $f(z) = (z z_0)^m g(z)$, $\forall z \in D^*(z_0; \delta)$, for some $\delta > 0$, where g is analytic in $D^*(z_0; \delta) := \{z : 0 < |z z_0| < \delta\}$ and $g(z_0) \neq 0$.
 - (c) Prove that if f has a pole of order m at z_0 , then

Res
$$(f; z_0) = \frac{1}{(m-1)!} \lim_{z \to z_0} \left\{ \frac{d^{m-1}}{dz^{m-1}} h(z) \right\}, \text{ where } h(z) = (z - z_0)^m f(z).$$

Show that the residue of the function $f(z) = \frac{\log z}{(z^2+1)^2}$ at i is $\frac{\pi+2i}{8}$.

5. Let f be a analytic in the upper-half plane $\{z: \operatorname{Im}(z) \geqslant 0\}$, except at finitely many points, none on the real axis. Suppose there exist M, R > 0 and $\alpha > 1$ such that

$$|f(z)| \leqslant \frac{M}{|z|^{\alpha}}, \quad |z| \geqslant R \quad \text{with } \operatorname{Im}(z) \geqslant 0.$$

Then prove that

$$I := \int_{-\infty}^{\infty} f(x) \ dx$$

converges (exists) and

 $I=2\pi i \times \mathrm{Sum}$ of Residues of f in the upper half plane.

Hence evaluate the integral

$$\int_{-\infty}^{\infty} \frac{x^2}{(x^2+1)(x^2+9)} \ dx.$$

(You may assume without proof the Residue Theorem).

- 6. (a) State the Principle of Argument Theorem.
 - (b) Prove Rouche's Theorem: Let γ be a simple closed path in an open starset A. Suppose that
 - i. f, g are analytic in A except for finitely many poles, none lying on γ .
 - ii. f and f + g have finitely many zeros in A.
 - iii. $|g(z)| < |f(z)|, z \in \gamma$. Then

$$ZP(f+g;\gamma) = ZP(f;\gamma)$$

where $ZP(f+g;\gamma)$ and $ZP(f;\gamma)$ denotes the excess number of zeros over poles of f+g and f inside γ respectively, where each is counted as many times as its order.

- (c) State the Fundamental Theorem of Algebra.
- (d) Determine the number of zeros of $z^4 2z^3 + 9z^2 + z 1$ in the circle |z| = 2.