

EASTERN UNIVERSITY, SRI LANKA

DEPARTMENT OF MATHEMATICS

THIRD EXAMINATION IN SCIENCE - 2014/2015

SECOND SEMESTER (Oct./Nov., 2018)

PM 303 - FUNCTIONAL ANALYSIS-I

Answer all questions

-

Time : Two hours

1. (a) Let X be a vector space of all ordered pairs $x = (\zeta_1, \zeta_2)$ of real numbers. Show that

$$||x|| = |\zeta_1| + |\zeta_2|$$

defines a norm on X.

(b) If (X₁, ||·||₁) and (X₂, ||·||₂) are normed spaces, show that with the usual operations the product vector space X = X₁ × X₂ is a normed space with the norm defined by

$$||x|| = \max(||x_1||_1, ||x_2||_2)$$

where $x = (x_1, x_2) \in X$.

- (c) If d is a metric induced by a norm on a normed linear space X, then prove that
 - i. d(x + a, y + a) = d(x, y)
 - ii. $d(\alpha x, \alpha y) = |\alpha| d(x, y)$

for all $x, y, a \in X$ and any scalar α .

- 2. (a) Define a Cauchy sequence in a normed linear space.
 - (b) Prove that on a finite dimensional normed linear space, any norm $\|\cdot\|$ is equivalent to any other norm $\|\cdot\|_0$.
 - (c) If $\|\cdot\|$ and $\|\cdot\|_0$ are equivalent norms on a normed linear space X, then show that (x_n) is a Cauchy sequence in $(X, \|\cdot\|)$ if and only if (x_n) is a Cauchy sequence $(X, \|\cdot\|_0)$.

- 3. (a) Let X and Y be normed linear spaces and let $T: D(T) \longrightarrow Y$ be a linear operator from the domain $D(T) \subseteq X$ of T to Y. If the range of T, $R(T) \subseteq Y$, then prove that the inverse operator $T^{-1}: R(T) \longrightarrow D(T)$ exists if and only if Tx = 0 implies that x = 0.
 - (b) Prove that if T^{-1} exists, then it is a linear operator.
 - (c) Let T be a bounded linear operator from a normed linear space X onto a normed linear space Y. If there is a positive number b such that

$$||Tx|| \ge b ||x|| \quad \forall x \in X,$$

then show that $T^{-1}: Y \longrightarrow X$ exists and bounded.

- 4. (a) Define the sublinear functional on a vector space.
 - i. Show that a sublinear functional p satisfies p(0) = 0 and $p(-x) \ge -p(x)$.
 - ii. Show that a norm on a vector space X is a sublinear functional on X.
 - (b) Let X and Y be normed linear spaces and let $S, T \in B(X, Y)$, the space of bounder linear operators from X to Y, with $||Sx|| \le k_1 ||x||$ and $||Tx|| \le k_2 ||x||$ for all $x \in X$. Prove the following:
 - i. $||(S+T)x|| \le (k_1+k_2)||x||$ for all $x \in X$,
 - ii. $||(\lambda S)x|| \leq |\lambda|k_1||x||$ for all $x \in X$ and for any scalar λ ,
 - iii. B(X,Y) is a vector space with respect to the operations defined by

$$(T+S)(x) = Tx + Sx$$
 for all $x \in X$,

 $(\alpha T)(x) = \alpha T x$ for all $x \in X$ and for any scalar α .