EASTERN UNIVERSITY, SRI LANKA
DEPARTMENT OF MATHEMATICS
THIRD EXAMINATION IN SCIENCE - 2014/2015
SECOND SEMESTER (Oct./Nov., 2018)
PM 303 - FUNCTIONAL ANALYSIS-I

Answer all questions
Time : Two hours

1. (a) Let X be a vector space of all ordered pairs $x=\left(\zeta_{1}, \zeta_{2}\right)$ of real numbers. Show that

$$
\|x\|=\left|\zeta_{1}\right|+\left|\zeta_{2}\right|
$$

defines a norm on X.
(b) If $\left(X_{1},\|\cdot\|_{1}\right)$ and $\left(X_{2},\|\cdot\|_{2}\right)$ are normed spaces, show that with the usual operations the product vector space $X=X_{1} \times X_{2}$, is a normed space with the norm defined by

$$
\|x\|=\max \left(\left\|x_{1}\right\|_{1},\left\|x_{2}\right\|_{2}\right)
$$

where $x=\left(x_{1}, x_{2}\right) \in X$.
(c) If d is a metric induced by a norm on a normed linear space X, then prove that
i. $d(x+a, y+a)=d(x, y)$
ii. $d(\alpha x, \alpha y)=|\alpha| d(x, y)$
for all $x, y, a \in X$ and any scalar α.
2. (a) Define a Cauchy sequence in a normed linear space.
(b) Prove that on a finite dimensional normed linear space, any norm $\|\cdot\|$ is equivalent to any other norm $\|\cdot\|_{0}$.
(c) If $\|\cdot\|$ and $\|\cdot\|_{0}$ are equivalent norms on a normed linear space X, then show that $\left(x_{n}\right)$ is a Cauchy sequence in $(X,\|\cdot\|)$ if and only if $\left(x_{n}\right)$ is a Cauchy sequence $\left(X,\|\cdot\|_{0}\right)$.
3. (a) Let X and Y be normed linear spaces and let $T: D(T) \longrightarrow Y$ be a linear operator from the domain $D(T) \subseteq X$ of T to Y. If the range of $T, R(T) \subseteq Y$, then prove that the inverse operator $T^{-1}: R(T) \longrightarrow D(T)$ exists if and only if $T x=0$ implies that $x=0$.
(b) Prove that if T^{-1} exists, then it is a linear operator.
(c) Let T be a bounded linear operator from a normed linear space X onto a normed linear space Y. If there is a positive number b such that

$$
\|T x\| \geq b\|x\| \quad \forall x \in X
$$

then show that $T^{-1}: Y \longrightarrow X$ exists and bounded.
4. (a) Define the sublinear functional on a vector space.
i. Show that a sublinear functional p satisfies $p(0)=0$ and $p(-x) \geq-p(x)$.
ii. Show that a norm on a vector space X is a sublinear functional on X.
(b) Let X and Y be normed linear spaces and let $S, T \in B(X, Y)$, the space of bounder linear operators from X to Y, with $\|S x\| \leq k_{1}\|x\|$ and $\|T x\| \leq k_{2}\|x\|$ for all $x \in X$ Prove the following:
i. $\|(S+T) x\| \leq\left(k_{1}+k_{2}\right)\|x\|$ for all $x \in X$,
ii. $\left\|(\lambda S) x\left|\left|\leq|\lambda| k_{1} \| x\right|\right|\right.$ for all $x \in X$ and for any scalar λ,
iii. $B(X, Y)$ is a vector space with respect to the operationş defined by

$$
(T+S)(x)=T x+S x \quad \text { for all } x \in X
$$

$(\alpha T)(x)=\alpha T x \quad$ for all $x \in X$ and for any scalar

