EASTERN UNIVERSITY, SRI LANKA

DEPARTMENT OF MATHEMATICS

THIRD EXAMINATION IN SCIENCE - 2014/2015
SECOND SEMESTER (Dec.,2017/Jan., 2018)
PM 303 - FUNCTIONAL ANALYSIS-I

1. Define the term norm on a linear space.
(10 Marks)
(a) Show that the following formula

$$
\|x\|_{p}=\left(\sum_{n=1}^{\infty}\left|x_{n}\right|^{p}\right)^{1 / p}
$$

defines a norm for x in the l^{p} space, where $1<p<\infty$.
(30 Marks)
(b) A norm $\|\cdot\|$ on a linear space X is said to be equivalent to a norm $\|_{0}$ on X if

$$
a\|x\|_{0} \leq\|x\| \leq b\|x\|_{0}
$$

for each $x \in X$, where a and b are positive numbers.
On a finite dimensional vector space, show that any norm $\|\cdot\|$ is equivalent to any other norm $\|\cdot\|_{0}$
(30 Marks)
(c) Let

$$
\|x\|_{1}=\sum_{1=1}^{n}\left|x_{i}\right|, \quad \text { and } \quad\|x\|_{\infty}=\max _{1 \leq i \leq n}\left|x_{i}\right|
$$

be two norms on a linear space $X=\mathbb{F}^{n}$, where $x=\left(x_{1}, x_{2}, \cdots, x_{n}\right)$. Show that $\|x\|_{1}$ is equivalent to $\|x\|_{\infty}$ in the space X.
(30 Marks)
2. Define a linear operator between two normed linear spaces.
(a) Let T be a linear operator from a vector spaces X to a vector space Y. Prove the following:
i. The range of $T, R(T)$, is a vector space.
ii. The inverse operator of $T, T^{-1}: R(T) \longrightarrow D(T)$ exists if and only if

$$
T x=0 \Longrightarrow x=0
$$

where $D(T)$ is the domain of T.
(30 Marks)
iii. If T^{-1} exists, then it is a linear operator.
(20 Marks)
(b) Show that

$$
T x(t)=\int_{a}^{t} x(\tilde{c}) d \tilde{c}
$$

$t \in[a, b]$, is a linear operator on the space of continuous functions $\mathcal{C}[a, b]$. (20 Marks)
3. Let X and Y be normed linear spaces. The norm of a bounded linear operator T from the domain of $T, D(T)$, to Y is given by

$$
\|T\|=\sup _{x \in D(T), x \neq 0} \frac{\|T x\|}{\|x\|}
$$

(a) If X is a finite dimensional normed linear space, then show that eyery linear operator on X is bounded.
(20 Marks)
(b) Prove that if a linear operator is continuous then it is bounded.t (30 Marks)
(c) Let T be a bounded linear operator from a normed linear space X to a normed linear space Y.
i. Show that the null space of T is closed.
ii. Prove that T is bounded if and only if T maps bounded sets in X into a bounded sets in Y.
4. (a) State the Hahn-Banach theorem for normed linear spaces and prove this by using the generalized Hahn-Banach theorem.
(40 Marks)
(b) Let X be a normed linear space and let $x_{0} \neq 0$ be any element of X. Prove that there exists a bounded linear functional \bar{f} on X such that

$$
\|\bar{f}\|=1 \quad \text { and } \quad \bar{f}\left(x_{0}\right)=\left\|x_{0}\right\| .
$$

(30 Marks)
(c) For every x in a normed linear space X, show that

$$
\|x\|=\sup _{f \in X^{\prime}, f \neq 0} \frac{|f(x)|}{\|f\|}
$$

where X^{\prime} is the dual space of X.

