EASTERN UNIVERSITY, SRI LANKA
THIRD EXAMINATION IN SCIENCE - 2013/2014
SECOND SEMESTER (October, 2017)

PM 309 - NUMBER THEORY

(SPECIAL REPEAT)

1. (a) i. Show that the linear Diophantine equation $a x \pm b y \bar{y} c$ has a solution if and only if $d \mid c$, where $d=\operatorname{gcd}(a, b)$.

Let x_{0}, y_{0} be any particular solution of this equation then show that all the other solutions are given by $x=x_{0}+\frac{b}{d} t, \stackrel{\Delta}{=}=y_{0}-\frac{a}{d} t$ for each $t \in \mathbb{Z}$. ii. Write 100 as the sum two summands one of which is divible by 7 and the other by 11 .
(b) Let a and n be positive integers with $a>1$. Prove that, if $a^{n}+1$ is prime, then a is even and n is a power of 2 .
2. (a) Let $a, b, a_{i}, b_{i} \in \mathbb{Z}$ and $m, k \in \mathbb{N}$. Prove the following:
i. if $a \equiv b(\bmod m)$ then $a^{k} \equiv b^{k}(\bmod m)$;
ii. if $a_{i} \equiv b_{i}(\bmod m) \quad \forall i$ then $\sum_{i=1}^{k} a_{i} \equiv \sum_{i=1}^{k} b_{i}(\bmod m)$.
(b) i. If $P(x)=\sum_{i=0}^{n} c_{i} x^{i}$ is a polynomial, where $c_{i} \in \mathbb{Z}$ and $a \equiv b(\bmod m)$ then prove that $P(a) \equiv P(b)(\bmod m)$.
ii. Prove that any palindrome with even number of digits is divisible by 11.
(c) Solve the following simultaneous system of linear congruences:

$$
\begin{aligned}
x & \equiv 1(\bmod 3) \\
x & \equiv 3(\bmod 5) \\
x & \equiv 5(\bmod 7)
\end{aligned}
$$

3. (a) State the Euler's theorem.

Hence, prove the Fermat's little theorem: if p is a prime then $n^{p} \equiv n(\bmod p)$ for any integer n.
(b) i. Find the remainder when $2^{20}+3^{30}+4^{40}+5^{50}+6^{60}$ is divided by 7 .
ii. Solve the congruence $x^{103} \equiv 4(\bmod 11)$.
4. (a) Define the following:
i. pseudoprime;
ii. Carmichael number;
iii. primitive root.
(b) If $n=q_{1} q_{2} \ldots q_{k}$, where q_{j}^{\prime} s are distinct prime such that $\left(q_{j}^{\prime}-1\right) \mid(n-1)$ for all' j then prove that n is a Carmichael number.
(c) Show that 6601 is a Carmichael number using:
i. the definition;
ii. the above part (b).
(d) Find all primitive roots modulo 8.

