

EASTERN UNIVERSITY, SRI LANKA THIRD EXAMINATION IN SCIENCE - 2013/2014 SECOND SEMESTER (October, 2017) PM 309 - NUMBER THEORY (SPECIAL REPEAT)

Answer all questions

Time : Two hours

1. (a) i. Show that the linear Diophantine equation ax + by = c has a solution if and only if d|c, where d = gcd(a, b).

Let x_0, y_0 be any particular solution of this equation then show that all the other solutions are given by $x = x_0 + \frac{b}{d}t$, $y \stackrel{:}{=} y_0 - \frac{a}{d}t$ for each $t \in \mathbb{Z}$.

- ii. Write 100 as the sum two summands one of which is divisible by 7 and the other by 11.
- (b) Let a and n be positive integers with a > 1. Prove that, if $a^n + 1$ is prime, then a is even and n is a power of 2.
- 2. (a) Let $a, b, a_i, b_i \in \mathbb{Z}$ and $m, k \in \mathbb{N}$. Prove the following:
 - i. if $a \equiv b \pmod{m}$ then $a^k \equiv b^k \pmod{m}$; ii. if $a_i \equiv b_i \pmod{m}$ $\forall i$ then $\sum_{i=1}^k a_i \equiv \sum_{i=1}^k b_i \pmod{m}$.
 - (b) i. If $P(x) = \sum_{i=0}^{n} c_i x^i$ is a polynomial, where $c_i \in \mathbb{Z}$ and $a \equiv b \pmod{m}$ then prove that $P(a) \equiv P(b) \pmod{m}$.

ii. Prove that any palindrome with even number of digits is divisible by 11.

- (c) Solve the following simultaneous system of linear congruences:
 - $x \equiv 1 \pmod{3}$ $x \equiv 3 \pmod{5}$ $x \equiv 5 \pmod{7}.$
- (a) State the Euler's theorem.
 Hence, prove the Fermat's little theorem: if p is a prime then n^p ≡ n(mod p) for any integer n.
 - (b) i. Find the remainder when $2^{20} + 3^{30} + 4^{40} + 5^{50} + 6^{60}$ is divided by 7. ii. Solve the congruence $x^{103} \equiv 4 \pmod{11}$.
- 4. (a) Define the following:
 - i. pseudoprime;
 - ii. Carmichael number;
 - iii. primitive root.
 - (b) If $n = q_1 q_2 \dots q_k$, where q_j 's are distinct prime such that $(q_j 1)|(n 1)$ for all j then prove that n is a Carmichael number.

(c) Show that 6601 is a Carmichael number using:

- i. the definition;
- ii. the above part (b).
- (d) Find all primitive roots modulo 8.