EASTERN UNIVERSITY, SRI LANKA
 DEPARTMENT OF MATHEMATICS
 THIRD EXAMINATION IN SCIENCE - 2011/2012
 FIRST SEMESTER (March, 2014)
 MT 302 - COMPLEX ANALYSIS
 (SPECIAL REPEAT)

Answer all Questions

Time: Three hours

Q1. (a) Let $A \subseteq \mathbb{C}$ be an open set and let $f: A \rightarrow \mathbb{C}$. Define what is meant by f being analytic at $z_{0} \in A$.
(b) Let the function $f(z)=u(x, y)+i v(x, y)$ be defined throughout some ϵ neighbourhood of a point $z_{0}=x_{0}+y_{0}$. Suppose that the first - order partial derivatives of the functions u and v with respect to x and y exist everywhere in that heightbourhood and that they are continuous $\left(x_{0}, y_{0}\right)$. Prove that, if those partial derivatives satisfy the Cauchy-Riemann equations

$$
\frac{\partial u}{\partial x}=\frac{\partial u}{\partial y} ; \frac{\partial u}{\partial y}=\frac{\partial v}{\partial x}
$$

at $\left(x_{0}, y_{0}\right)$, then the derivative $f^{\prime}\left(z_{0}\right)$ exists.
(c) (i) Define what is meant by the function $h: \mathbb{R}^{2} \rightarrow \mathbb{R}$ being harmonic.
(ii) Suppose that the function $F(z)=u(x, y)+i v(x, y)$ is analytic in a domain D. Show that the functions $u(x, y)$ and $v(x, y)$ are harmonic in D.
Q2. (a) (i) Define what is meant by a path $\gamma:[\alpha, \beta] \rightarrow \mathbb{C}$.
(ii) For a path γ and a continuous function $f: \gamma \rightarrow \mathbb{C}$, define $\int_{\gamma} f(z) d z$.
(b) Let $a \in \mathbb{C}, r>0$ and $n \in \mathbb{Z}$. Show that

$$
\int_{C(a ; r)}(z-a)^{n} d x= \begin{cases}0, & n \neq-1 \\ 2 \pi i, & n=-1\end{cases}
$$

where $C(a ; r)$ denotes a positively oriented circle with centre a and radius r. (State any results you use without proof).
(c) State the Cauchy's Integral Formula.

By using the Cauchy's Integral Formula compute the following integrals:
(i) $\int_{C(0 ; 2)} \frac{z}{\left(9-z^{2}\right)(z+i)} d z$;
(ii) $\int_{C(0 ; 1)} \frac{1}{(z-a)^{k}(z-b)} d z$; where $k \in \mathbb{Z},|a|>1$ and $|b|<1$.

Q3. (a) State the Mean Value Property for Analytic Functions.
(b) (i) Define what is meant by the function $f: \mathbb{C} \rightarrow \mathbb{C}$ being entire.
(ii) Prove the Liouville's. Theorem: If f is entire and

$$
\frac{\max \{|f(t)|:|t|=r\}}{r} \rightarrow 0, \text { as } r \rightarrow \infty
$$

then f is constant.
(State nay results you use without proof).
Prove that a bounded entire function is constant. *
(c) Prove the Maximum - Modulus Theorem: Let f^{*} be analytic in an open connected set A. Let γ be a simple closed path that is connected, together with its inside, in A. Let

$$
M:=\sup _{z \in \gamma}|f(z)|
$$

If there exists z_{0} inside γ such that $\left|f\left(z_{0}\right)\right|=M$, then f is constant throughout A. Consequently, if f is not constant in A, then

$$
|f(z)|<M, \forall z \text { inside } \gamma
$$

(State any theorem you use without proof)

Q4. (a) Let $\delta>0$ and let $f: D^{*}\left(z_{0} ; \delta\right) \rightarrow \mathbb{C}$, where $D^{*}\left(z_{0} ; \delta\right):=\left\{z: 0<\left|z-z_{0}\right|<\delta\right\}$. Define what is meant by
(i) f having a singularity at z_{0};
(ii) the order of f at z_{0};
(iii) f having a pole or zero at z_{0} of order m;
(iv) f having a simple pole or simple zero at z_{0}.
(b) Prove that an isolated singularity z_{0} of f is removable if and only if f is bounded on some deleted neighborhood $D^{*}\left(z_{0} ; \delta\right)$ of z_{0}.
(c) Prove that if f has a simple pole at z_{0}, then

$$
\operatorname{Res}\left(f ; z_{0}\right)=\lim _{z \rightarrow z_{0}}\left(z-z_{0}\right) f\left(z_{0}\right)
$$

Q5. Let f be analytic in the upper - half plane $\{z: \operatorname{Im}(z) \geq 0\}$, except at finitely many points, none on the real axis. Suppose there exist $M, R>0$ and $\alpha>1$ such that

$$
|f(z)| \leq \frac{M}{|z|^{\alpha}},|z| \geq R \text { with } \operatorname{Im}(z) \geq 0 .
$$

Then prove that

$$
I:=\int_{-\infty}^{\infty} f(x) d x
$$

converges (exists) and

$$
I=2 \pi i \times \text { Sum of Residues of } f \text { in the upper half plane. }
$$

Hence evaluate the integral

$$
\int_{-\infty}^{\infty} \frac{\cos x}{1+x^{2}} d x
$$

(You may assume without proof the Residue Theorem).
Q6. (a) State the Argument Theorem.
(b) Prove Rouche's Theorem : Let γ be a simple closed path in an open starset A. Suppose that
(i) f, g are analytic in A except for finitely many poles, none lying on γ.
(ii) f and $f+g$ have finitely many zeros in A.
(iii) $|g(z)|<|f(z)|, z \in \gamma$. Then

$$
Z P(f+g ; \gamma)=Z P(f ; \gamma)
$$

where $Z P(f+g ; \gamma)$ and $Z P(f ; \gamma)$ denote the number of zeros - number of poles inside γ of $f+g$ and f respectively, where each is counted as many times as its order.
(c) State the Fundamental theorem of Algebra.
(d) Prove that all 5 zeros of $P(z)=z^{5}+3 z^{3}+1$ lie in $|z|<2$.

