EASTERN UNIVERSITY, SRI LANKA DEPARTMENT OF MATHEMATICS
THIRD YEAR EXAMINATION IN SCIENCE - 2010/2011 SECOND SEMESTER (June - 2014)
MT 307 - CLASSICAL MECHANICS
SPECIAL REPEAT

Answer all Questions

Time: Three hours

1. Two frames of reference S and S^{\prime} have a common origin O, and S^{\prime} rotates with constant angular velocity $\underline{\omega}$ relative to S. At a time $\frac{t}{t}$ a particle P has position vector \underline{r} referred to O; and $\underline{\dot{r}}$ and $\underline{\ddot{r}}$ denote the velocity afd acceleration of P relative to S^{\prime} respectively.
Prove that the acceleration of P relative to S is

$$
\underline{\underline{r}}+2 \underline{\omega} \wedge \underline{\underline{r}}+\underline{\omega} \wedge(\underline{\omega} \wedge \underline{r}) .
$$

An object is thrown downward with an initial speed v_{0}. Prove that after time t the object is deflected east of the vertical by the amount

$$
\omega v_{0} \sin \lambda t^{2}+\frac{1}{3} \omega g \sin \lambda t^{3}
$$

where λ is the earth's co - latitude.
2. (a) With the usual notations, obtain the equations of motion for a system of N particles in the following forms:
.i. $M \underline{f}_{G}=\sum_{i=1}^{N} \underline{F}_{i}$,
ii. $\frac{d \underline{H}}{d t}=\sum_{i=1}^{N} \underline{r}_{i} \wedge \underline{F}_{i}$,
where $\sum_{i=1}^{N} \underline{h}_{i}=\underline{H}$ and $\underline{h}_{i}=\underline{r}_{i} \wedge m_{i} \underline{v}_{i}$.
(State clearly the results that you may use)
(b) A solid of mass M is in the form of a tetrahedron $O X Y Z$, the edges $O X, O Y, O Z$ of which are mutually perpendicular, rests with $X O Y$ on a fixed smooth horizontal plane and $Y O Z$ against a smooth vertical wall. The normal to the rough face $X Y Z$ is in the direction of a unit vector \underline{n}. A heavy uniform sphere of mass m and center C rolls down the face causing the tetrahedron to acquire a velocity $-V \underline{j}$ where \underline{j} is the unit vector along $O Y$. If $\overrightarrow{O C}=\underline{r}$, then prove that

$$
(M+m) V-m \dot{\underline{r}} \cdot \underline{j}=\mathrm{constant}
$$

and that

$$
\frac{7}{5} \underline{\ddot{r}}=\underline{f}-\underline{n}(\underline{n} \cdot \underline{f})
$$

where $\underline{f}=\underline{g}+\dot{V} \underline{j}$ and \underline{g} is the acceleration of gravity.
3. With the usual notation obtain the Euler's equations for the motion of the rigid body, having a point fixed, in the form:

$$
\begin{aligned}
& A \dot{\omega}_{1}-(B-C) \omega_{2} \omega_{3}=N_{1} \\
& B \dot{\omega}_{2}-(C-A) \omega_{1} \omega_{3}=N_{2} \\
& C \dot{\omega}_{3}-(A-B) \omega_{1} \omega_{2}=N_{3} .
\end{aligned}
$$

A body moves under no forces about a point O. The pricipal moment of inertia at O being $6 A, 3 A, A$. Initially the angular velocity of the body has components $\omega_{1}=n, \omega_{2}=0, \omega_{3}=3 n$ about the principal axis. Show that at any latter time $\omega_{2}=-\sqrt{5} n \tanh \sqrt{5} n t$.
4. Obtain the Lagrange's equations of motion using D'Alembert's principle for a conservative hólonomic dynamical system.

Use the Lagrangian method and obtain the equations of motion for a spherical pendulum of length r.
5. With the usual notations, derive Lagrange's equation for the impulsive motion from Lagrange's equations for a holonomic system in the following form

$$
\triangle\left(\frac{\partial T}{\partial \dot{q}_{j}}\right)=S_{j .} \quad j=1,2, \ldots, n
$$

A uniform rod $A B$ of length $2 a$ and mass m has a particle of mass M attached to the end B. It is at rest on a smooth horizontal table when an impulse I is applied at A in a direction perpendicular to $A B$, and in the plane of the table. Find the initial velocities of A and B and prove that the resulting kinetic energy is

$$
\frac{2 I^{2}(m+3 M)}{m(m+4 M)}
$$

6. (a) Define the poisson bracket.

Show that the Hamiltonian equations of the holonomic system may be written in the form

$$
\dot{q}_{k}=\left[q_{k}, H\right], \quad \dot{p}_{k}=\left[p_{k}, \dot{H}\right],
$$

and show that for any function $f\left(q_{i}, p_{i}, t\right), \frac{d f}{d t}=\frac{\partial f}{\partial t}+\left[f, \frac{1}{\bar{y}}\right]$.
(b) Show that, if f and g are constants of motion then their poisson bracket $[f, g]$ is also a constant of motion.

