# EASTERN UNIVERSITY, SRI LANKA <br> THIRD EXAMINATION IN SCIENCE - 2010/2011 <br> SECOND SEMESTER (March/April, 2014) <br> MT 310 - FLUID MECHANICS <br> SPECIAL REPEAT 

Answer all questions

1. (a) Derive the continuity equation for a fluid flow in the form

$$
\frac{D \rho}{D t}+\rho \underline{\nabla} \cdot \underline{q}=0
$$

where $\rho$ and $\underline{q}$ are the density and the velocity of the fluid.
Hence, establish the equation of continuity for an incompressible fluid in the form $\frac{\partial u}{\partial x}+\frac{\partial v}{\partial y}+\frac{\partial w}{\partial z}=0$ in cartesian coordinates, wher $u, v$ and $w$ are the cartesian components of the velocity.
(b) Show that $\frac{k}{r^{5}}\left(3 x^{2}-r^{2}, 3 x y, 3 x z\right)$, where $r^{2}=x^{2}+y^{2}+z^{2}$ and $k$ is a constant, represents the velocity field in a possible fluid motion.

Show also that this motion is irrotational and hence determine the streamlines.
2. Let a gas occupy the region $r \leq R$, where $R$ is a function of time $t$, and a liquid of constant density $\rho$ lie outside the gas. By assuming that there is contact between the gas and the liquid all the time and that the motion is symmetric about the origin $r=0$, show that the motion is irrotational.

If the velocity at $r=R$, the gas liquid boundary is continuous then show that the pressure $p$ at a point $P(\underline{r}, t)$ in the liquid is given by

$$
\frac{p}{\rho}+\frac{1}{2}\left(\frac{R^{2} \dot{R}}{r^{2}}\right)^{2}-\frac{1}{r} \frac{d}{d t}\left(R^{2} \dot{R}\right)=f(t), \text { wherer }=|\underline{r}|
$$

Further, if it is given that the liquid extends to infinity and is at rest with constant pressure $\Pi$ at infinity, prove that the gas liquid interface pressure is equal to $\Pi+\frac{\rho}{2 R^{2}} \frac{d}{d R}\left(R^{3} \dot{R}^{2}\right)$.

If the gas obeys the Boyle's law $p v^{4 / 3}=$ constant, where $v$ is the volume of the gas, and expands from rest at $R=a$ to a position of rest $R=2 a$, show that the ratio of initial pressure of the gas to the pressure of the liquid at infinity is 14:3.
3. (a) Let a two dimensional source of strength $m$ is situated at origin. Show that the complex potential $w$ at a point $P(z)$ due to this source is given by $w=-m \ln z$.
(b) Two sources, each of strength $m$ placed at $(-a, 0),(a, 0)$ and a sink of strength $2 m$ at the origin. Show that the streamlines are the curved

$$
\left(x^{2}+y^{2}\right)^{2}=a^{2}\left(x^{2}-y^{2}+\lambda x y\right)
$$

where $\lambda$ is a variable parameter.
Show also that the fluid velocity at any point is $\frac{2 m a^{2}}{r_{1} r_{2} r_{3}}$, where $r_{1}, r_{2}$ and $r_{3}$ are the distances of points from he sources and the sink.
4. Write down the Bernoulli's equation for steady motion of an inviscid incompressible fluid.

A three dimensional doublet of strength $\mu$ whose axis is in the direction of $\overrightarrow{O x}$ is distant a froma rigid plane $x=0$ which is the sole boundary of liquid of density $\rho$, infinite in extent. Find the pressure at a point on the boundary distant $r$ from the doublet. If the pressure at infinity is $p_{\infty}$, then show that the pressure on the plane is least at a dstance $\frac{\sqrt{5} a}{2}$ from the doublet.

