<u>EASTERN UNIVERSITY, SRI LANKA</u> <u>THIRD EXAMINATION IN SCIENCE - 2010/11</u> <u>SECOND SEMESTER (Special Repeat)</u> (June 2014)

PH 305 FUNDAMENTALS OF STATISTICAL PHYSICS

Time: 01 hour.

Answer <u>ALL</u> Questions

1. Specifying macrostates and microstates, describe the concept of a statistical ensemble. Express *entropy* of a statistical ensemble in terms of number of microstates Ω .

Distinguish a classical statistical system from a quantum statistical system.

Consider a system of N non-interacting classical particles, each fixed in position carrying a magnetic moment μ , which is immersed in a magnetic field H. Each particle may then exist in one of the two non-degenerate energy states E=0 and $E=2\mu H$.

- (a) Using Stirling approximation $\ln(x!)=x\ln(x)-x$, obtain an expression for the entropy S(n), where *n* is the number of particles in the upper state.
- (b) Show that at thermodynamic equilibrium, the entropy $S(n)=k_{\rm B}N\ln 2$, where $k_{\rm B}$ is the Boltsman constant.
- (c) Give a schematic plot of S(n) against n.
- Outline the conditions for the three types of statistics used for classical and quantum systems. Give an example for each case.

Consider a perfect gas of N free electrons in a solid of volume V, which obey

the Fermi-Dirac distribution $f(E) = \frac{n(E)}{g(E)} = \frac{1}{\exp[(E - \mu)/k_BT] + 1}$, where the

density of electron states is given by $g(E) = 4\pi V \left(\frac{2m_e}{h^2}\right)^{3/2} E^{1/2}$ and the

1

1 1 OCT 2014

symbols have their usual meaning. Show that the Fermi energy at absolute zero (*T*=0) is given by $E_f = \frac{h^2}{8m_e} \left(\frac{3N}{\pi V}\right)^{2/3}$.

Find the Fermi energy in copper on the assumption that each copper atom contributes one free electron to the electron gas. The density of copper is 8.94×10^3 kg m⁻³ and its atomic mass is 63.5 a.m.u.

The following values may be useful: Avergadro number 6.023×10^{23} mol⁻¹, Plank's constant (*h*) = 6.64×10^{-34} J s and mass of electron (*m_e*) = 9.1×10^{-31} kg.