EASTERN UNIVERSITY, SRI LANKA
 DEPARTMENT OF MATHEMATICS

EXTERNAL DEGREE EXAMINATION IN SCIENCE -2008/2009
FIRST YEAR, SECOND SEMESTER (May/Sept., 2012) EXTCC 103-BIO MATHEMATICS AND BIO STATISTICS (REPEAT)

Q1. (a) For a study, the number of leaves of 20 plants have been recorded as follows.
$\begin{array}{llllllllllllllllllll}1 & 3 & 2 & 5 & 2 & 4 & 5 & 2 & 3 & 3 & 3 & 4 & 2 & 2 & 3 & 3 & 4 & 2 & 3 & 4\end{array}$
i. Draw the stem and leaf plot for the above data.
ii. Build the frequency distribution for the number of leaves.
iii. Find the mean, variance ánd coefficient of variation for the number of leaves based on frequency distribution in part (ii).
(b) The weights X (in grams, g) of insects of a certain species are normally distributed with mean $100 g$ and standard deviation $5 g$. Find the probability that the weight of an insect randomly selected will be
i. less than $90 g$;
ii. between $90 g$ and $110 g$;
iii. more than 110 g .

Q2. The following table gives the soil temperature $X\left(\right.$ in $\left.{ }^{\circ} \mathrm{C}\right)$ and the number of days Y for germination of pea nuts.

$$
\begin{array}{cccccccc}
\text { Temperature X } & 9 & 11 & 14 & 17 & 20 & 21 & 25 \\
\text { Number of days Y } & 44 & 35 & 34 & 28 & 25 & 20 & 16
\end{array}
$$

i. Draw a suitable plot to represent the relationship between temperature number of days for germination and discuss it.
ii. Compute the correlation coefficient between temperature and number of $\mathrm{d} \ell$ for germination and interpret it.
iii. Estimate the parameters β_{0} and β_{1} in the simple linear regression model of form $Y=\beta_{0}+\beta_{1} X+\varepsilon$.
iv. Interpret the estimated parameters in part (iii).
v. Predict the number of days for germination, when soil temperature is $18^{\circ} \mathrm{C}$

Q3. (a) Simplify each of the following:
i. $\frac{\sqrt[3]{8 y^{-6} x^{3}}}{\sqrt{y^{-4} x^{2}}-3 y^{-2} x}$;
ii. $\left(\frac{81}{4}\right)^{-\frac{1}{2}} \times 8^{0} \times\left(\frac{27}{8}\right)^{\frac{2}{3}} \times(0.5)^{-1}$;
(b) i. If a, b and c are three consecutive integers then show that $\log (1+a c)$ $2 \log b$.
ii. If $p=q^{2 a}, q=r^{2 b}$ and $r=p^{2 c}$ then prove that $a b c=\frac{1}{8}$. .
iii. If $2 a-3 b=2$ and $a b=6$ then find $8 a^{3}-27 b^{3}$.
(c) Solve the following equations:
i. $x^{2}+\frac{11}{2} x+6=0$;
ii. $4^{5-9 x}=\frac{1}{8^{x-2}}$;
iii. $\log _{2}\left(x^{2}-6 x\right)=3+\log _{2}(1-x)$.

Q4. (a) Evaluate the following:
i. $\lim _{x \rightarrow 2} \frac{4-x^{2}}{3-\sqrt{x^{2}+5}}$;
ii. $\lim _{x \rightarrow \infty} \frac{x^{2}+x-2}{4 x^{3} \simeq 1}$.
(b) i. Differentiate the function $y=e^{-x \sin x}$ with respect to x.
ii. Find the maximum and minimum points of the function $y=x^{3}-2 x^{2}+x-$
(c) Evaluate the following:
i. $\int \frac{x^{2}+2}{x(x+2)(x-1)} d x$;
ii. $\int \frac{2 x^{2}}{\sqrt[3]{x^{3}+1}} d x$;
iii. $\int_{0}^{1} x \ln x d x$.

