

Eastern University, Sri Lanka

First Year First Semester Examination in Science-2009/2010

> (May/July 2012)

External Degree

EXTCH 102 Introduction to Electrochemistry and Thermodynamics

(Repeat)

Answer all questions
Time: 01 hour

1. (a) Define extensive and intensive properties with suitable examples.
(15 Marks)
(b) i) Derive the expression for the work done when ' n ' moles of an ideal gas expand isothermally and reversibly from volume V_{1} to V_{2}.

> (15 Marks)
ii) Five moles of an ideal gas at the initial pressure of 1.5 atm at $10{ }^{\circ} \mathrm{C}$ were expanded reversibly under isothermal conditions to a final pressure of 0.5 atm . Calculate the work done by the gas and change in internal energy. ($\mathrm{R}=8.314 \mathrm{~J}$ $\mathrm{mol}^{-1} \mathrm{~K}^{-1}$)
(25 Marks)
(c) i) Define the term heat capacity and from the basic thermodynamic relations show that the isobaric heat capacity $\left(C_{p}\right)$ is given by $C_{p}=\left(\frac{\partial H}{\partial T}\right)_{p}$
ii) The molar isobaric heat capacity C_{P} for NH_{3} gas over the temperature range T_{l} to T_{2} is given by $C_{P}=a+b T+c T^{2}$, where T is a temperature (in Kelvin) and a, b and c are constants. Show that the change in enthalpy (ΔH) when the temperature of one mole of NH_{3} gas increased from T_{1} to T_{2} is given by

$$
\begin{equation*}
\Delta \mathrm{H}=a\left(T_{2}-T_{1}\right)+\frac{b}{2}\left(T_{2}^{2}-T_{1}^{2}\right)+\frac{c}{3}\left(T_{2}^{3}-T_{1}^{3}\right) \tag{25Marks}
\end{equation*}
$$

2. (a) i) Write the mathematical expression for the second law of thermodynamics.
ii) Show that the entropy change (ΔS) for one mol of an ideal gas expand from volume V_{1} to V_{2} and temperature T_{1} to T_{2} is given by

$$
\Delta S=C_{V} \ln \left(\frac{T_{2}}{T_{1}}\right)+R \ln \left(\frac{V_{2}}{V_{1}}\right)
$$

(20 Marks)
(b) The following redox reaction occurs in a cell:

$$
B i(s)+3 \mathrm{Fe}^{3+}(a q) \rightarrow 3 \mathrm{Fe}^{2+}(a q)+B i^{3+}(a q)
$$

(i) Write down the half cell reaction and identify the oxidizing agent.
(ii) How many electrons are transferred in the redox reaction
(iii) Represent the electrochemical cell for the cell reaction
(iv) Calculate the standard cell potential ($E_{\text {cell }}^{\theta}$) for this cell.

$$
\left[E_{F e^{3+} / F e^{2+}}^{\theta}=0.771 \mathrm{~V}, E_{B i^{3+} / B i}^{\theta}=0.311 \mathrm{~V}\right]
$$

(c) Determine the $E_{\text {ooll }}^{\theta}$ and $E_{\text {cell }}$ of the following cell:

$$
\begin{aligned}
& \operatorname{Sn}(s) / \mathrm{Sn}^{2+}(a q, 0.225 M) / / \mathrm{Pb}^{2+}(a q, 0.015 \mathrm{M}) / \mathrm{Pb}(\mathrm{~s}) \\
{\left[E_{P b^{2+} / P b}^{\theta}=\right.} & \left.-0.126 \mathrm{~V}, E_{S n^{2+} / S n}^{\theta}=-0.140 \mathrm{~V}\right]
\end{aligned}
$$

