# EASTERN UNIVERSITY, SRI LANKA DEPARTMENT OF MATHEMATICS <br> <br> SECOND EXAMINATION IN SCIENCE - $2008 / 2009$ <br> <br> SECOND EXAMINATION IN SCIENCE - $2008 / 2009$ <br> FIRST SEMESTER (July/Aug., 2015) <br> EXTMT 201 - VECTOR SPACES AND MATRICES <br> (EXTERNAL DEGREE) <br> <br> REPEAT 

 <br> <br> REPEAT}

Time: Three hours
(a) Define the term subspace of a vector space.

Let $V$ be a vector space over a field $\mathbb{F}$. Prove that a non-empty subset $S$ of $V$ is a subspace of $V$ if and only if $\alpha x+\beta y \in S$, for any $x, y \in S$ and $\alpha, \beta \in \mathbb{F}$.
(b) Prove that, $V=\left\{f \in C[a, b]: f\left(\frac{a+b}{2}\right)=0\right\}$, is a vector space with usual addition of functions and scalar multiplication, where the set $C[a, b]$ denotes the set of all real valued continuous functions defined in the interval $[a, b] \subseteq \mathbb{R}$.
Is $f\left(\frac{a+b}{2}\right)=1$, a vector space under the same operations? Justify your answer.
(a) Define the following:
(i) a linearly independent set of vectors;
(ii) a basis for a vector space.
(b) Let $V$ be an $n$-dimensional vector space.

Prove the following:
(i) A linearly independent set of vectors of $V$ with $n$ elements is a basis for $V$.
(ii) Any linearly independent set of vectors of $V$ may be extended as a basis for $V$.
(iii) If $L$ is a subspace of $V$, then there exists a subspace $M$ of $V$ $V=L \oplus M$, where $\oplus$ denote the direct sum .
(c) i. Extend the subset $\{(1,2,-1,1),(0,1,2,-1)\}$ to a basis for $\mathbb{R}^{4}$.
ii. Let $V$ be a vector space over the field $F$. Suppose that $v_{1}, v_{2}$, . linearly dependent vectors of $V$ such that $v_{1}, v_{2}, \cdots, v_{m-1}$ are linear pendent. Prove that $v_{m} \in\left\langle v_{1}, v_{2}, \cdots, v_{m-1}\right\rangle$.
3. (a) Define the range space $R(T)$ and the null space $N(T)$ of a linear transfo $T$ from a vector space $V$ into another vector space $W$.
Find $R(T), N(T)$ of the linear transformation $T: \mathbb{R}^{3} \rightarrow \mathbb{R}^{3}$, defined by

$$
T(x, y, z)=(x+2 y+3 z, x-y+z, x+5 y+5 z), \forall(x, y, z) \in \mathbb{R}^{3} .
$$

Verify the equation $\operatorname{dim} V=\operatorname{dim}(R(T))+\operatorname{dim}(N(T))$ for this linear trat tion.
(b) Let $T: \mathbb{R}^{3} \rightarrow \mathbb{R}^{3}$, defined by $T(x, y, z)=(x+2 y, x+y+z, z)$ be transformation and let $B_{1}=\{(1,1,1),(1,2,3),(2,-1,1)\}$ and $B_{2}=\{(1,1,0),(0,1,1),(1,0,1)\}$ be bases of $\mathbb{R}^{3}$.
i. Find the matrix representation of $T$ with respect to the basis $B_{1}$;
ii. Using the transition matrix, find the matrix representation of $T$ witt to the basis $B_{2}$.
4. (a) Define the following terms:
(i) rank of a matrix;
(ii) row reduced echelon form of a matrix.
(b) Let $A$ be an $m \times n$ matrix. Prove the following:
(i) row rank of $A$ is equal to column rank of $A$;
(ii) if $B$ is a matrix obtained by performing an elementary row operat then $A$ and $B$ have the same rank.
(c) Find the rank of the matrix

$$
\left(\begin{array}{ccccc}
1 & 3 & -2 & 5 & 4 \\
1 & 4 & 1 & 3 & 5 \\
1 & 4 & 2 & 4 & 3 \\
2 & 7 & -3 & 6 & 13
\end{array}\right)
$$

(d) Find the row reduced echelon form of the matrix

$$
\left(\begin{array}{cccccc}
1 & 1 & 1 & 1 & -1 & 1 \\
1 & 1 & 3 & 3 & 0 & 2 \\
2 & 1 & 3 & 3 & -1 & 3 \\
2 & 1 & 1 & 1 & -2 & 4
\end{array}\right)
$$

Define the term adjoint of $A$ as applied to an $n \times n$ matrix $A=\left(a_{i j}\right)$.
(a) With the usual notations, prove that

$$
A \cdot(\operatorname{adj} A)=(\operatorname{adj} A) \cdot A=\operatorname{det} A \cdot I
$$

Hence find the inverse of the matrix

$$
\left[\begin{array}{ccc}
3 & -2 & 1 \\
1 & 3 & -2 \\
2 & -1 & 3
\end{array}\right]
$$

(b) Prove that, if $A=\left(\begin{array}{cc}2 x & -x^{2} \\ 1 & 0\end{array}\right)$, then $A^{n}=\left(\begin{array}{cc}(n+1) x^{n} & -n x^{n+1} \\ n x^{n-1} & (1-n) x^{n}\end{array}\right)$, where
$x \in \mathbb{N}$.
(c) By applying appropriate row(column) operations, prove that the determinant of the matrix

$$
\left(\begin{array}{ccc}
1+x_{1} & 1 & 1 \\
1 & 1+x_{2} & 1 \\
1 & 1 & 1+x_{3}
\end{array}\right)
$$

can be expressed as $x_{1} x_{2} x_{3}\left(1+\frac{1}{x_{1}}+\frac{1}{x_{2}}+\frac{1}{x_{3}}\right)$, where $x_{1}, x_{2}, x_{3} \in \mathbb{R} \backslash\{0\}$.
6. (a) Let $P$ be a $n$ square matrix such that $P^{2}=P$ and $\lambda$ be a real number su $\lambda \neq 1$, prove that $\left(I_{n}-\lambda P\right)$ is non-singular and that

$$
\left(I_{n}-\lambda P\right)^{-1}=I_{n}+\frac{\lambda}{1-\lambda} P
$$

where $I_{n}$ is the identity matrix of order $n$.
(b) State the necessary and sufficient condition for a system of linear equatio consistent.
Show that the system of equations

$$
\begin{aligned}
x_{1}-3 x_{2}+x_{3}+c x_{4} & =b \\
x_{1}-2 x_{2}+(c-1) x_{3}-x_{4} & =2 \\
2 x_{1}-5 x_{2}+(2-c) x_{3}+(c-1) x_{4} & =3 b+4
\end{aligned}
$$

is consistent, for all values of $b$ if $c \neq 1$. Find the value of $b$ for which the is consistent if $c=1$ and obtain the general solution for these values.
(c) State Crammer's rule for $3 \times 3$ matrix and use it to solve

$$
\begin{array}{r}
3 x_{1}+x_{2}+x_{3}=3 \\
3 x_{1}+2 x_{2}+2 x_{3}=5 \\
2 x_{1}-3 x_{2}-2 x_{3}=1
\end{array}
$$

