

EASTERN UNIVERSITY, SRI LANKA <u>DEPARTMENT OF MATHEMATICS</u> XTERNAL DEGREE EXAMINATION IN SCIENCE -2008/2009 SECOND YEAR, SECOND SEMESTER (Turbert, 2015) XTMT 203-ALGEBRA-II(EIGEN SPACE AND QUADRATIC FORMS)

nswer all Questions

Time: Two hours

1. Define the terms *eigenvalue* and *eigenvector* of a linear transformation.

[10 marks]

- (a) (i) Let V be a vector space. Prove that eigen vectors that corresponding to distinct eigen values of a linear transformation $T: V \to V$ are linearly independent. [30 marks]
 - (ii) If A is an $n \times n$ real matrix and λ is an eigen value of the real symmetric matrix $(I_n + A^T A)$, then show that $\lambda \ge 1$, where I_n is the $n \times n$ identity matrix. [20 marks]

(b) Let

 $A = \begin{pmatrix} 3 & 1 & 1 \\ 2 & 4 & 2 \\ 1 & 1 & 3 \end{pmatrix}.$

Find a non-singular matrix P such that $P^{-1}AP$ is diagonal.

[40 marks]

[10 marks]

- 2. (a) Define the term *positive definite* matrix.
 - (b) Prove the followings:
 - i. a real symmetric $n \times n$ matrix A is positive definite if and only if all the eigen values of A are positive; [30 marks]

ii. the eigen values of a real symmetric Hermition matrix are real.

20 mark

40 mark

[20 mark

(c) Let

	0	1	1	١
A =	1	0	1	۰.
	$\left(1\right)$	1	0 /	/

Find the orthogonal matrix P such that $P^T A P$ is diagonal.

3. (a) State the Cayley Hamilton theorem.

Find the minimum polynomial of the square matrix

(2	5	0	0	0)	
	0	2	0	0	0	
	0	0	4	2	0	•=
	0	0	3	5	0	
	0	0	0	0	7)	
			·			

(b) Find an orthogonal transformation which reduces the following quadratic for to a diagonal form

$$x_1^2 + 2x_2^2 + 3x_3^2 - 4x_1x_2 - 4x_2x_3$$

40 mark

40 mark

-

4. (a) Let λ₁ and λ₂ be two distinct roots of the equation |A - λB| = 0, where A at B are real symmetric matrices, and let u₁ and u₂ be two vectors satisfying t following

$$(A - \lambda_i B)u_i = 0 \quad \text{for } i = 1, 2.$$

Prove that $u_1^T B u_2 = 0$.

[30 marl

(b) Simultaneously diagonalize the following quadratic forms

$$\phi_1 = x_1^2 + 2x_2^2 + 8x_2x_3 + 12x_1x_2 + 12x_1x_3,$$

$$\phi_2 = 3x_1^2 + 2x_2^2 + 5x_3^2 + 2x_2x_3 - 2x_1x_3.$$

[70 mar]