27 OCT 2017

EASTERN UNIVERSITY, SRI LANKA DEPARTMENT OF MATHEMATICS
XTERNAL DEGREE EXAMINATION IN SCIENCE -2008/2009
SECOND YEAR, SECOND SEMESTER (JumSept, 2015) XTMT 203-ALGEBRA-II(EIGEN SPACE AND QUADRATIC FORMS)

nswer all Questions

Time: Two hours

1. Define the terms eigenvalue and eigenvector of a linear transformation.
[10 marks]
(a) (i) Let V be a vector space. Prove that eigen vectors that corresponding to distinct eigen values of a linear transformation $T: V \rightarrow V$ are linearly independent.
(ii) If A is an $n \times n$ real matrix and λ is an eigen value of the real symmetric matrix $\left(I_{n}+A^{T} A\right)$, then show that $\lambda \geq 1$, where I_{n} is the $n \times n$ identity matrix.
[20 marks]
(b) Let

$$
A=\left(\begin{array}{lll}
3 & 1 & 1 \\
2 & 4 & 2 \\
1 & 1 & 3
\end{array}\right)
$$

Find a non-singular matrix P such that $P^{-1} A P$ is diagonal.
2. (a) Define the term positive definite matrix.
(b) Prove the followings:
i. a real symmetric $n \times n$ matrix A is positive definite if and only if all the eigen values of A are positive;
[30 marks]
ii. the eigen values of a real symmetric Hermition matrix are real.
[20 mark
(c) Let

$$
A=\left(\begin{array}{lll}
0 & 1 & 1 \\
1 & 0 & 1 \\
1 & 1 & 0
\end{array}\right)
$$

Find the orthogonal matrix P such that $P^{T} A P$ is diagonal.
3. (a) State the Cayley Hamilton theorem.

Find the minimum polynomial of the square matrix

$$
\left(\begin{array}{lllll}
2 & 5 & 0 & 0 & 0 \\
0 & 2 & 0 & 0 & 0 \\
0 & 0 & 4 & 2 & 0 \\
0 & 0 & 3 & 5 & 0 \\
0 & 0 & 0 & 0 & 7
\end{array}\right)
$$

(b) Find an orthogonal transformation which reduces the following quadratic for to a diagonal form

$$
x_{1}^{2}+2 x_{2}^{2}+3 x_{3}^{2}-4 x_{1} x_{2}-4 x_{2} x_{3} .
$$

[40 mark
4. (a) Let λ_{1} and λ_{2} be two distinct roots of the equation $|A-\lambda B|=0$, where A at B are real symmetric matrices, and let u_{1} and u_{2} be two vectors satisfying t following

$$
\left(A-\lambda_{i} B\right) u_{i}=0 \quad \text { for } i=1,2 .
$$

Prove that $u_{1}^{T} B u_{2}=0$.
(b) Simultaneously diagonalize the following quadratic forms

$$
\begin{gathered}
\phi_{1}=x_{1}^{2}+2 x_{2}^{2}+8 x_{2} x_{3}+12 x_{1} x_{2}+12 x_{1} x_{3}, \\
\phi_{2}=3 x_{1}^{2}+2 x_{2}^{2}+5 x_{3}^{2}+2 x_{2} x_{3}-2 x_{1} x_{3} .
\end{gathered}
$$

