EASTERN UNIVERSITY, SRI LANKA

EXTERNAL DEGREE EXAMINATION IN SCIENCE - 2009/2010 SECOND YEAR FIRST SEMESTER (June / Sept. , 2012) EXTMT 203-EIGENSPACE AND QUADRATIC FORMS (PROPER \& REPEAT)

1. (a) Define the term eigenvalue and eigenvector of a linear transformation.

Find the eigenvalues and eigenvectors of the matrix

$$
\left(\begin{array}{ccc}
1 & -1 & 1 \\
-1 & 1 & 1 \\
-1 & -1 & 3
\end{array}\right)
$$

(b) i. Prove that eigenvectors that corresponding to distinct eigenvalues of a linear transformation $T: V \rightarrow V$ are linearly independent.
ii. Show that 0 is an eigenvalue of T if and only if T is singular.
iii. Suppose λ is an eigenvalue of an invertible operator T. Show that λ^{-1} is an eigenvalue of T^{-1}.
(c) Orthogonally diagonalize the matrix

$$
A=\left(\begin{array}{lll}
0 & 1 & 1 \\
1 & 0 & 1 \\
1 & 1 & 0
\end{array}\right)
$$

2. Define the term minimum polynomial of a square matrix.
(a) State the Cayley - Hamilton theorem.

Find the minimum polynomial of the square matrix

$$
\left(\begin{array}{cccc}
2 & 1 & 0 & 0 \\
0 & 2 & 0 & 0 \\
0 & 0 & 1 & 1 \\
0 & 0 & -2 & 4
\end{array}\right)
$$

(b) Prove that for any square matrix A, the minimum polynomial ex unique.
(c) Let $M=\left(\begin{array}{ll}A & 0 \\ 0 & B\end{array}\right)$, where A and B are square matrices. Sho minimum polynomial $m(t)$ of M is the least common multiple of th polynomials $g(t)$ and $h(t)$ of A and B respectively.
3. (a) Find an orthogonal transformation which reduces the following qua to a diagonal form

$$
5 x_{1}^{2}+6 x_{2}^{2}+7 x_{3}^{2}-4 x_{1} x_{2}+4 x_{2} x_{3}=1
$$

(b) Simultaneously diagonalize the following pair of quadratic forms

$$
\begin{aligned}
& \phi_{1}=x_{1}^{2}-x_{2}^{2}-2 x_{3}^{2}-2 x_{1} x_{2}+4 x_{2} x_{3} \\
& \phi_{2}=x_{1}^{2}+2 x_{2}^{2}+2 x_{3}^{2}-2 x_{1} x_{2}-2 x_{2} x_{3}
\end{aligned}
$$

4. (a) What is meant by an inner product on a vector space.

Let $x=\left(x_{1}, x_{2}, \ldots, x_{n}\right), y=\left(y_{1}, y_{2}, \ldots, y_{n}\right) \in \mathbb{R}^{n}$, where $x_{i}, y_{i} \in \mathbb{R}$, Let the inner product $\langle,$.$\rangle be defined on \mathbb{R}^{n}$ as

$$
<x, y>=x y^{T}=\sum_{i=1}^{n} x_{i} y_{i}
$$

Show that $\left(\mathbb{R}^{n},<!,>\right)$ is an inner product space.
(b) State and prove Cauchy Schwarz Inequality.
(c) State the Gram Schmidt Process.

Find the orthonormal set for span of M in \mathbb{R}^{4}, where

$$
M=\left\{(1,0,-1,0)^{T},(0,1,2,1)^{T},(2,1,-1,0)^{T}\right\}
$$ Eastern University, Sri Lanka

Year Second Semester Examination in Science - 2008/2009 External Degree Programmee (Re-repeat)
EXTBT-204 / Plant Structure \& Systematica (Feb/Mar-2012)

Answer all questions
Time: Two hours

1. Briefly write on the followings
(a) Dispersal of fruits by water
(b) Reproductive structure of an angiosperm
(c) Modifications of axillary-bud of an angiosperm
2. Compare the followings
(a) Qualitative and quantitative characters
(b) Tap root and fibrous root
(c) True fruits and false fruits
3. Briefly write the importance of the followings
(a) Herbarium
(b) Type specimens
(c) Keys in plant systematic
4. Write short notes on the followings
(a) Placentation
(b) Advantages and disadvantages of scientific names
(c) Natural classification
