

EASTERN UNIVERSITY, SRI LANKA XTERNAL DEGREE EXAMINATION IN SCIENCE - 2008/2009 SECOND YEAR SECOND SEMESTER (April/May, 2016) EXTMT 204 - RIEMANN INTEGRAL AND SEQUENCES AND SERIES OF FUNCTIONS (REPEAT)

nswer all Questions

Time: Two hours

27 OCT 2017

- 21. (a) Let I := [a, b] and let $f : I \to \mathbb{R}$ be a bounded function on I. Define
 - (i) the lower sum of f;
 - (ii) the upper sum of f;

corresponding to a partition P of I.

(b) (i) Prove that if $f \in \mathbb{B}[a, b]$, then for any partition P of [a, b] we have

$$m(b-a) \le L(P, f) \le U(P, f) \le M(b-a);$$

(ii) Prove that for any $f \in \mathbb{B}[a, b]$, we have

$$\int_{\underline{a}}^{b} f(x) dx \leq \int_{a}^{\overline{b}} f(x) dx.$$

(c) Let f be a continuous function over [a, b]. Prove that an integral

$$\int_{a}^{b} f(x) dx = \lim_{n \to \infty} \frac{b-a}{n} \sum_{k=1}^{n} f\left(a + \frac{k(b-a)}{n}\right)$$

Hence find the value of $\int_0^2 x^2 dx$.

(a) Prove that, if f is positive, continuous and monotonic decreas Q2. defined on $[1,\infty)$ such that $f(k) = a_k$ for each natural number sequence $\{a_k\}$ of positive terms is monotonic decreasing such that converges or diverges according to $\int_{1}^{\infty} f(x) dx$ converges or diverges or diverges.

Using the above result, show that $\sum_{n=1}^{\infty} \frac{1}{n^2}$ converges.

(b) State what is meant by the integral, $\int_{a}^{b} f(x) dx$, being an imprope the first kind.

Discuss the convergence of the following integral

$$\int_{a}^{\infty} \frac{1}{x^{p}} \, dx$$

where p is a constant and a > 0.

- Q3. (a) Prove that a sequence of real valued functions $\{f_n\}$ defined on $E \subseteq$ uniformly on E if and only if for all $\varepsilon > 0$ there is $N_{\varepsilon} \in \mathbb{N}$ such the $|f_n(x) - f_m(x)| < \varepsilon$ for all $x \in E$ and $m, n \ge N_{\varepsilon}$.
 - (b) By using the result, that is, a sequence $\{f_n\}$ of functions on a set converges uniformly on A to a limit function $f: A \to \mathbb{R}$ if and on

$$\lim_{n \to \infty} [\sup |f_n(x) - f(x)| : x \in A] = 0,$$

show that the sequence $\{f_n\}$, where $f_n(x) = nxe^{-nx^2}$, $n \in \mathbb{N}, \mathfrak{a}$ not uniformly on [0,1].

- (c) Prove that if $\{f_n\}_{n\in\mathbb{N}}$ be a sequence of continuous function on a set suppose that ${f_n}_{n \in \mathbb{N}}$ converges uniformly on A to a function f: f is continuous on A.
- Q4. Let f_n be a sequence of real-valued functions defined on a subset E_0 $f: E \to \mathbb{R}$. Define what is meant by saying that the infinite series \sum to f uniformly on E.

Let $\{f_n\}$ and $\{g_n\}$ be two sequences of functions defined on a none Suppose also that,

- 1. $|S_n(x)| = \left|\sum_{k=1}^n f_k(x)\right| \le M$ for all $x \in E$ and $n \in \mathbb{N}$;
- 2. $\sum_{k=1}^{\infty} |g_{k+1}(x) g_k(x)|$ converges uniformly in E;
- 3. $g_n \to 0$ uniformly in E.

Prove that $\sum_{k=1}^{\infty} f_k(x)g_k(x)$ converges uniformly in E.

Hence or otherwise show that, $\sum_{k=1}^{\infty} \frac{(-1)^k}{k+ax^2}$, a > 0 converges uniformly in \mathbb{R} .

1000