EASTERN UNIVERSITY, SRI LANKA

XTERNAL DEGREE EXAMINATION IN SCIENCE - 2008/2009 SECOND YEAR SECOND SEMESTER (April/May, 2016)

EXTMT 204 - RIEMANN INTEGRAL AND
SEQUENCES AND SERIES OF FUNCTIONS (REPEAT)
21. (a) Let $I:=[a, b]$ and let $f: I \rightarrow \mathbb{R}$ be a bounded function on I.

Define
(i) the lower sum of f;
(ii) the upper sum of f;
corresponding to a partition P of I.
(b) (i) Prove that if $f \in \mathbb{B}[a, b]$, then for any partition P of $[a, b]$ we have

$$
m(b-a) \leq L(P, f) \leq U(P, f) \leq M(b-a)
$$

(ii) Prove that for any $f \in \mathbb{B}[a, b]$, we have

$$
\int_{\underline{a}}^{b} f(x) d x \leq \int_{a}^{\bar{b}} f(x) d x
$$

(c) Let f be a continuous function over $[a, b]$. Prove that an integral

$$
\int_{a}^{b} f(x) d x=\lim _{n \rightarrow \infty} \frac{b-a}{n} \sum_{k=1}^{n} f\left(a+\frac{k(b-a)}{n}\right)
$$

Hence find the value of $\int_{0}^{2} x^{2} d x$.

Q2. (a) Prove that, if f is positive, continuous and monotonic decrea defined on $[1, \infty)$ such that $f(k)=a_{k}$ for each natural number sequence $\left\{a_{k}\right\}$ of positive terms is monotonic decreasing such tha converges or diverges according to $\int_{1}^{\infty} f(x) d x$ converges or diver Using the above result, show that $\sum_{n=1}^{\infty} \frac{1}{n^{2}}$ converges.
(b) State what is meant by the integral, $\int_{a}^{b} f(x) d x$, being an imprope the first kind.

Discuss the convergence of the following integral

$$
\int_{a}^{\infty} \frac{1}{x^{p}} d x
$$

where p is a constant and $a>0$.
Q3. (a) Prove that a sequence of real valued functions $\left\{f_{n}\right\}$ defined on $E \subseteq$ uniformly on E if and only if for all $\varepsilon>0$ there is $N_{\varepsilon} \in \mathbb{N}$ such th $\left|f_{n}(x)-f_{m}(x)\right|<\varepsilon$ for all $x \in E$ and $m, n \geq N_{\varepsilon}$.
(b) By using the result, that is, a sequence $\left\{f_{n}\right\}$ of functions on a set converges uniformly on A to a limit function $f: A \rightarrow \mathbb{R}$ if and on

$$
\lim _{n \rightarrow \infty}\left[\sup \left|f_{n}(x)-f(x)\right|: x \in A\right]=0
$$

show that the sequence $\left\{f_{n}\right\}$, where $f_{n}(x)=n x e^{-n x^{2}}, n \in \mathbb{N}$, a not uniformly on $[0,1]$.
(c) Prove that if $\left\{f_{n}\right\}_{n \in \mathbb{N}}$ be a sequence of continuous function on a set suppose that $\left\{f_{n}\right\}_{n \in \mathbb{N}}$ converges uniformly on A to a function f : f is continuous on A.

Q4. Let f_{n} be a sequence of real-valued functions defined on a subset E $f: E \rightarrow \mathbb{R}$. Define what is meant by saying that the infinite series $\sum_{n=1}^{\infty}$ to f uniformly on E.

Let $\left\{f_{n}\right\}$ and $\left\{g_{n}\right\}$ be two sequences of functions defined on a none Suppose also that,

1. $\left|S_{n}(x)\right|=\left|\sum_{k=1}^{n} f_{k}(x)\right| \leq M$ for all $x \in E$ and $n \in \mathbb{N}$;
2. $\sum_{k=1}^{\infty}\left|g_{k+1}(x)-g_{k}(x)\right|$ converges uniformly in E;
3. $g_{n} \rightarrow 0$ uniformly in E.

Prove that $\sum_{k=1}^{\infty} f_{k}(x) g_{k}(x)$ converges uniformly in E.
Hence or otherwise show that, $\sum_{k=1}^{\infty} \frac{(-1)^{k}}{k+a x^{2}}, a>0$ converges uniformly in \mathbb{R}.

