

EASTERN UNIVERSITY, SRI LANKA DEPARTMENT OF MATHEMATICS PERNAL DEGREE EXAMINATION IN SCIENCE 2008/2009 SECOND YEAR SECOND SEMESTER (Mar./May, 2016) EXTMT 205 - DIFFERENTIAL GEOMETRY (Repeat)

	5	
er all questions	4 7	Time : One hour
n		

State and prove Serret-Frenet formula.

Let Γ be a curve with constant torsion τ and a point Q, a constant distance c from the point P on Γ , on the binormal to the curve Γ at P. Show that the angle between the binormal to the locus of Q and the binormal to the given curve Γ is

$$\tan^{-1}\left(\frac{c\tau^2}{\kappa\sqrt{1+c^2\tau^2}}\right)$$

where κ is the curvature of the curve Γ at P.

What is meant by saying that a curve is a helix?

- (a) Prove that, a space curve to be a helix if and only if $\frac{\tau}{\kappa}$ is constant, where τ and κ are torsion and curvature of the given space curve, respectively.
- (b) Show that the curve given by $x = a \cos \theta$, $y = a \sin \theta$ and $z = a\theta \cot \beta$ is a helix, where a and β are constants.