

## EASTERN UNIVERSITY, SRI LANKA

DEPARTMENT OF MATHEMATICS
ERNAL DEGREE EXAMINATION IN SCIENCE - 2008/2009 ECOND YEAR 'FIRST SEMESTER (July/August, 2015)

## EXTMT 207 - NUMERICAL ANALYSIS ( REPEAT)

(a) Define what is meant by:
i. absolute error;
ii. relative error .

Let $p=0.54617$ and $q=0.54601$. Use four-digit arithmetic to approximate $p-q$, and determine the absolute and relative errors when rounding and chopping.
(b) i. Show that the polynomial nesting technique can be used to evaluate

$$
f(x)=1.01 e^{4 x}-4.62 e^{3 x}-3.11 e^{2 x}+12.2 e^{x}-1.99
$$

ii. Use three - digit rounding arithmetic and the formula given in the statement of part (a) to evaluate $f(1.53)$. Evaluate the absolute error and relative error.
iii. Repeat the calculation in part(b) using the nesting form of $f(x)$ that was found in part (a). Compare the approximations with part (b).
2. (a) Let $x=\phi(x)$ be the rearrangement of the equation $f(x)=0$ and d iteration,

$$
x_{n+1}=\phi\left(x_{n}\right), \quad n=0,1, \ldots .
$$

with the initial value $x_{0}$. If $\phi^{\prime}(x)$ exists and is continuous such that $K<1$ for all $x$, then show that the sequence $x_{n}$ generated by the above converges to the unique root $\alpha$ of the equation $f(x)=0$. Find a real roc equation

$$
f(x)=x^{3}+x^{2}-1=0
$$

by the method of iteration.
(b) Given an initial guess $x_{0}$, derive Newton-Rapshon method to find a be proximation $x_{1}$ for approximating the root of a function $f(x)$.
The equation

$$
x^{2}-1-\sin x=0
$$

has roots near 0.6 and 1.6. Use the Newton-Rapshon method to find the subject to a tolerance of $\varepsilon=10^{-6}$.
3. (a) Suppose that $x_{0}, x_{1}, \ldots, x_{n}$ are distinct numbers in the interval $[a$, $f \in C^{n+1}[a, b]$. Obtain a unique polynomial $P_{n}(x)$ of degree at most $n$. property

$$
f\left(x_{k}\right)=P_{n}\left(x_{k}\right) \quad \text { for each } k=0,1,2, \ldots, n
$$

and show that

$$
f(x)-P_{n}(x)=\left(x-x_{0}\right)\left(x-x_{1}\right) \ldots\left(x-x_{n}\right) \frac{f^{n+1}(\xi)}{(n+1)!}
$$

where $\xi \in[a, b]$.
(b) i. Use Lagrange's method to find the interpolating polynomial for the di

| $i$ | 0 | 1 | 2 | 3 |
| :---: | :---: | :---: | :---: | :---: |
| $x_{i}$ | 1 | 2 | 3 | 4 |
| $\ln x_{i}$ | 0 | 0.693 | 1.099 | 1.386 |

ii. Approximate $\ln (2.718)$ using the polynomial obtained in part (i).
iii. Find an upper bound on the error for the Lagrange interpolating polynomial on the interval $[1,4]$.
(a) Use the Jacobi method to approximate the solution of the following system of linear equations.

$$
\begin{aligned}
5 x_{1}-2 x_{2}+3 x_{3} & =-1 \\
-3 x_{1}+9 x_{2}+x_{3} & =2 \\
2 x_{1}-x_{2}-7 x_{3} & =3
\end{aligned}
$$

Continue the iterations until two successive approximations are identical when rounded to three significant digits.
(b) With the usual notations, the Simpson's rule is given by

$$
\int_{x_{i-1}}^{x_{i+1}} f(x) d x=\frac{h}{3}\left(f_{i-1}+4 f_{i}+f_{i+1}\right)-\frac{1}{90} h^{5} f^{(i v)}\left(\xi_{i}\right), \text { where } \xi_{i} \in\left[x_{i-1}, x_{i+1}\right]
$$

Obtain the composite Simpson's rule, and show that the composite error is less than or equal to

$$
\frac{1}{180} h^{4}(b-a)\left|f^{(i v)}(\xi)\right|, \text { where }\left|\cdot f^{(i v)}(\xi)\right|=\max _{a \leq x \leq b}\left|f^{(i v)}(x)\right|
$$

Hence show that composite Simpson's rule is exact for all polynomials of degree 3 or less.

