

ERN UNIVERSIT

EASTERN UNIVERSITY, SRI LANKA DEPARTMENT OF MATHEMATICS

ERNAL DEGREE EXAMINATION IN SCIENCE - 2008/2009

ECOND YEAR FIRST SEMESTER (March/May, 2016)

(REPEAT)

ver all Questions

Time: One hour

With the usual notations, obtain the following equations for a common catenary:

ou (a) $s = C \tan \psi;$

int (b) $y = C \sec \psi;$

(c) T = wy;

er

(d) $y^2 = s^2 + c^2$.

A uniform flexible chain of length ℓ and weight per unit length ω , rest in a vertical plane with length $k \ell (0 < k < \ell)$ in contact with the smooth plane inclined at an angle α to the horizontal and upper end of the chain is attached to a point P. Show that the tension at P is $\omega \ell \{1 - k(2 - k)\cos^2\alpha\}^{1/2}$ and find the horizontal, vertical distance of P from lower end.

2. If S and M are shearing force and bending moment respectively at a pouniformly loaded beam, then prove that

$$\frac{dS}{dx} = \omega$$
 and $\frac{dM}{dx} = -S$

where ω is the weight per unit length of the beam.

State the Bernoulli-Euler law of flexure.

A uniform elastic beam AB of length 3a, weight W and flexural rigidity B is characteristic horizontally at it ends, which are at the same horizontal level. Two concertions, W and 2W are placed at the points of trisection of the beam with a load near to A. Show that reaction at A and B are $\frac{95W}{54}$ and $\frac{121W}{54}$ respectively. Find also bending moment at each point.