

EASTERN UNIVERSITY, SRI LANKA

SECOND YEAR SECOND SEMESTER (April/May, 2016)

EXTMT 218-FIELD THEORY (REPEAT)

Q1. State the Coulomb's law in Electric field.
(a) A total amount of charge Q is uniformly distrịuted along a thin, straight, plastic rod of length L.
Find the electric force acting on a point charge q located at a point P
(i) at a distance d far away along the rod direction from one of its end;
(ii) at a perpendicular distance y from the midpoint of the rod.
(b) Suppose a very large sheet has a uniform charge density of σ coulomb per square meter. Find the electric field strength where the location of the point of intersection coincides with z-axis.

Q2. (a) Define the term electric dipole.
Prove that the electric potential ϕ at a point P at a distance r form the dipole of moment \underline{p} is given by

$$
\phi=\frac{\underline{p} \cdot \underline{r}}{4 \pi \epsilon_{0} r^{3}}
$$

and the electric field components due to the dipole is given by

$$
E_{r}=\frac{p \cos \theta}{2 \pi \epsilon_{0} r^{3}} \text { and } E_{\theta}=\frac{p \sin \theta}{4 \pi \epsilon_{0} r^{2}},
$$

where E_{r} and E_{θ} are field components along the radial and angular directions.
(b) State and prove the Poisson's equation in electric field.

Q3. (a) State the Biot-Savart law and prove that $\vec{\nabla} \cdot \vec{B}=0$.
(b) Show that the equivalence between Biot-Savart and Ampere's law: brought out by determining the magnetic field \vec{B} due to an infini conductor carrying a steady current through it.
(c) Particle A with charge q and mass m_{A} and particle B with charge $2 q$: m_{B} are accelerated from rest by a uniform magnetic field into semi paths. The radii of the trajectories of the particles A and B are R respectively. The direction of the magnetic field is perpendicular to the of the particle. Show that $m_{A}: m_{B}=1: 8$.

Q4. (a) Define the term magnetic flux density and the magnetic dipole mome An amount of charge Q is uniformly distributed opver a disk of radius disk spins about its axis with angular velocity ω. Find the magneti moment of the disk.
(b) Find the magnetic field at the center of a current carrying square coil (with sides $2 a$.

