EASTERN UNIVERSITY, SRI LANKA

DEPARTMENT OF MATHEMATICS

FIRST EXAMINATION IN SCIENCE -200. || 2008 of $2008 / 20$ FIRST SEMESTER (Jur./Seq.in, 201 5)

EXTERNAL DEGREE

EXTMT 101 - FOUNDATION OF MATHEMATICS

(REPEAT)

1. (a) Prove the following equivalences using the laws of algebra of logic:
i. $p \vee(p \wedge q) \sim p$;
ii. $(p \wedge q) \vee \sim p \equiv \sim p \vee q$;
iii. $[p \vee(q \wedge r)] \vee \sim[(\sim q \wedge \sim r) \vee r] \equiv p \vee q$,
where p, q and r are statements.
(b) Test the validity of the argument "If you are a mathematician then you are clever. You are clever and rich. Therefore if you are rich then you are a mathematician".
2. (a) For any sets A and B, prove that $A \triangle B=(A \cup B) \backslash(A \cap B)$. Hence show that:
i. $A \triangle B$ and $A \cap B$ are disjoint,
ii. $A \cup B=(A \triangle B) \cup(A \cap B)$.
(b) For any sets A, B and C, prove that:
i. $A \times(B \cap C)=(A \times B) \cap(A \times C)$,
ii. $A \times(B \backslash C)=(A \times B) \backslash(A \times C)$.
3. (a) Let ρ be a relation defined on \mathbb{R} by $x \rho y \Leftrightarrow x^{2}-y^{2}=2(y-x)$, where $\mathbb{R} d t$ set of all real numbers.
i. Prove that ρ is an equivalence relation.
ii. Determine the ρ-class of 1 .
(b) Let R be an equivalence relation on a set A. Prove the following:
i. $[a] \neq \Phi \quad \forall a \in A$,
ii. $a R b \Leftrightarrow[a]=[b]$,
iii. either $[a]=[b]$ or $[a] \cap[b]=\Phi \quad \forall a \in A$.
4. (a) Define the following terms:
i. injective mapping,
ii. surjective mapping,
iii. inverse mapping.
(b) The functions $f: \mathbb{R} \rightarrow \mathbb{R}$ and $g: \mathbb{R} \rightarrow \mathbb{R}$ are defined by

$$
f(x)=\left\{\begin{array}{ll}
4 x+1, & \text { if } x \geq 0 ; \\
x, & \text { if } x<0 ;
\end{array} \quad \text { and } g(x)= \begin{cases}3 x, & \text { if } x \geq 0 \\
x+3, & \text { if } x<0\end{cases}\right.
$$

Show that $g \circ f$ is a bijection and give a formula for $(g \circ f)^{-1}$.
5. (a) Let $f: X \rightarrow Y$ be a mapping. Prove that f is surjective iff $Y \backslash f(A) \subseteq f($ all subset A of X.
(b) i. Prove that every partially ordered set has at most one last element.
ii. Show that last element of every partially ordered set is a maximal ele Is the converse true? Justify your answer.
6. (a) State division algorithm.

Show that the square of any odd integer is of the form $8 k+1$, where k is
(b) Using the Euclidean algorithm find the $\operatorname{gcd}(341,527)$.

- (c) A certain number of sixes and nines are added to give the sum of 126 ; if t of sixes and nines are interchanged, the new sis 114. How many of each originally?

