SECOND EXAMINATION IN SCIENCE - 2008/2009 VIVERSII

FIRST SEMESTER(June/July'2012)

EXTERNAL DEGREE

EXTMT 201 - VECTOR SPACES AND MATRICES

1. Define what is meant by a subspace of a vector space.
(a) Let $V=\left\{\sum_{i=0}^{n} a_{i} X^{i}: a_{i} \in \mathbb{R}, n \in \mathbb{N}\right\}$ be the set of polynomials in one variable with real coefficients. The vector addition and sćarar multiplication are defined as follows

$$
\left(\sum_{i=0}^{m} a_{i} X^{i}\right)+\left(\sum_{j=0}^{n} b_{j} X^{j}\right)=\sum_{r}\left(a_{r}+b_{r}\right) X^{r}
$$

where $a_{r}=0$, if $r>m$ and $b_{r}=0$, if $r>n$, and

$$
\alpha \cdot\left(\sum_{i=0}^{n} a_{i} X^{i}\right)=\sum_{i=0}^{n} \alpha a_{i} X^{i}, \forall \alpha \in \mathbb{R} .
$$

Prove that V is a vector space over the field \mathbb{R}.
(b) Let W_{1} and W_{2} be two subspaces of a vector space V over the field F and let A_{1} and A_{2} be two non-empty subsets of V. Prove with the usual notations that
i. $W_{1}+W_{2}=\left\langle W_{1} \cup W_{2}\right\rangle$;
ii. if $\left\langle A_{1}\right\rangle=W_{1}$ and $\left\langle A_{2}\right\rangle=W_{2}$ then $\left\langle A_{1} \cup A_{2}\right\rangle=W_{1}+W_{2}$.
2. (a) Define the following terms:
i. a linearly independent set of vectors;
ii. a basis of a vector space.
(b) Prove that the non-zero vectors $v_{1}, v_{2}, \cdots, v_{n}$ of a vector space V over the F are linearly dependent if and only if one of them say $v_{i}, i \in\{2,3, \cdots, n$ a linear combination of the preceding vectors.
(c) i. State and prove the dimension theorem for two subspaces of a finit mensional vector space.
ii. Let $U=\langle\{(1,1,0,-1),(1,2,3,0),(2,3,3,-1)\}\rangle$ and
$W=\langle\{(1,2,2,-2),(2,3,2,-3),(1,3,4,-3)\}\rangle$.
Find $\operatorname{dim}(U+W)$ and $\operatorname{dim}(U \cap W)$.
3. (a) Let T be a linear transformation from a vector space V into another v space W. Define:
i. range space $R(T)$;
ii. null space $N(T)$.

Find $R(T), N(T)$ of the linear transformation $T: \mathbb{R}^{3} \rightarrow \mathbb{R}^{3}$, defined h

$$
T(x, y, z)=(x-y+2 z, 2 x+y,-x-2 y+2 z), \forall(x, y, z) \in \mathbb{R}^{3}
$$

Verify the equation $\operatorname{dim} V=\operatorname{dim}(R(T))+\operatorname{dim}(N(T))$ for this linear th formation.
(b) Let $T: \mathbb{R}^{2} \rightarrow \mathbb{R}^{3}$ be a linear transformation defined by $T(x, y)=(x+2 y, 2 x-y,-x)$ and let $B_{1}=\{(0,1),(1,1)\}$ and $B_{2}=\{(1,1,0),(0,1,1),(1,0,1)\}$ be bases for \mathbb{R}^{2} and \mathbb{R}^{3}, respectively. Find the matrix representation of T with respect to the basis B_{1} and with respect to the basis B_{2} by using the transition matrix.
4. (a) Define the following terms as applied to a matrix:
i. rank;
ii. echelon form;
iii. row reduced echelon form.
(b) Let A be an $n \times n$ matrix. Prove that:

i. row rank of A is equal to column rank of A;
ii. if B is an $n \times n$ matrix, obtained by performing an elementary row operation on A, then $r(A)=r(B)$.
(c) i. Find the row rank of the matrix $\left(\begin{array}{rrrrr}1 & 3 & -2 & 5 & 4 \\ 1 & 4 & 1 & 3 & 5 \\ 1 & 4 & 2 & 4 & 3 \\ 2 & 7 & -3 & 6 & 13\end{array}\right)$.
ii. Find the row reduced echelon form of the matrix $\left(\begin{array}{rrrr}-1 & 3 & -1 & 2 \\ 0 & 11 & -5 & 3 \\ 2 & -5 & 3 & 1 \\ 4 & 1 & 1 & 5\end{array}\right)$.
5. (a) Define the following terms as applied to an $n \times n$ matrix $A=\left(a_{i j}\right)$:
i. cofactor $A_{i j}$ of an element $a_{i j}$;
ii. adjoint of A.

Prove with the usual notations that

$$
A \cdot(\operatorname{adj} A)=(\operatorname{adj} A) \cdot A=\operatorname{det} A \cdot I
$$

(b) i. if $A=\left(\begin{array}{ll}3 & -4 \\ 1 & -1\end{array}\right)$, then use the mathematical induction to prove $A^{n}=\left(\begin{array}{cc}1+2 n & -4 n \\ n & 1-2 n\end{array}\right)$, for every positive integer n.
ii. show that $\operatorname{det} A=(x-y)(x-z)(x-w)(y-z)(y-w)(z-w)$ for

$$
A=\left(\begin{array}{cccc}
1 & x & x^{2} & x^{3} \\
1 & y & y^{2} & y^{3} \\
1 & z & z^{2} & z^{3} \\
1 & w & w^{2} & w^{3}
\end{array}\right)
$$

6. (a) State the necessary and sufficient condition for a system of linear equati be consistent.

Reduce the augmented matrix of the following system of linear equatic its row reduced echelon form and hence determine the conditions on no: scalars $a_{11}, a_{12}, a_{21}, a_{22}, b_{1}$ and b_{2} such that the system has
(i) a unique solution;
(ii) no solution;
(iii) more than one solution.

$$
\begin{aligned}
& a_{11} x_{1}+a_{12} x_{2}=b_{1} \\
& a_{21} x_{1}+a_{22} x_{2}=b_{2}
\end{aligned}
$$

(b) Using row reduced echelon form, check wether:the following system of eque is consistent, if so, find the solution(s).

$$
\begin{aligned}
x_{1}+x_{2}-2 x_{3}+x_{4} & =-4 \\
4 x_{1}-2 x_{2}+x_{3}+2 x_{4} & =20 \\
3 x_{1}-x_{2}+3 x_{3}-2 x_{4} & =18 \\
5 x_{1}-3 x_{2}+4 x_{3}-3 x_{4} & =32
\end{aligned}
$$

(c) Solve the following system of linear equations by using Crammer's rule.

$$
\begin{aligned}
& x+2 y+3 z=10 \\
& 2 x-3 y+z=1 \\
& 3 x+y-2 z=9
\end{aligned}
$$

