EASTERN UNIVERSITY, SRI LANKA
DEPARTMENT OF MATHEMATICS
EXTERNAL DEGREE EXAMINATION IN SCIENCE - 2009/2010
SECOND YEAR, FIRST SEMESTER (June/Sept., 2012)

EXTMT 207 - NUMERICAL ANALYSIS (PROPER \& REPEAT)

Answer all questions
Time: Two hours

Q1. (a) Write the suitable form of any non-zero number $x \in F$, where F represents the set of all floating point numbers, and identify the terms involved.
(b) Define the relative round-off error, and explain with an illustrative example.
(c) Find the absolute and relative errors if the computed answer of the exact value 10.147 is 10.159.
(d) A function $f(x)=x^{3}-3 x^{2}+3 x-1$ is rearranged in a nested form given by

$$
g(x)=[(x-3) x+3] x-1
$$

Find $f(2.19)$ and $g(2.19)$ using 3-digit rounding. If the true value of $f(x)$ and $g(x)$ at $x=2.19$ is 1.685159 , compare the errors, and state the significance of this problem.

Q2. (a) (i) Let $x=g(x)$ be an arrangement of an equation $f(x)=0$, which has a root α in the interval I. Suppose that $g^{\prime}(x)$ exists and is continuous in I such that

$$
\left|g^{\prime}(x)\right| \leq h<1, \quad \forall x \in I
$$

where $0<h<1$.
Prove that for any given x_{0}, the sequence $\left\{x_{r}\right\}, r=0,1,2, \ldots$, defined by

$$
x_{r+1}=g\left(x_{r}\right)
$$

converges to the root α, and such α is unique.
(ii) Following iterative formulas are proposed to find a real root of the equa $f(x)=x^{3}+x^{2}-1=0$, using the iterative method given in (i).

$$
\begin{aligned}
& x_{r+1}=\frac{1}{\sqrt{x_{r}+1}} \\
& x_{r+1}=\frac{1}{x_{r}^{2}}-1
\end{aligned}
$$

Check the applicability of iterative equations (1) and (2) in finding real root of $f(x)$.
(b) Derive the Newton-Raphson method using Taylor series or otherwise.

Carry out four iterations to find x, correct to 4 -decimal points, such that

$$
f(x)=x^{4}-5=0
$$

with an initial estimate $x_{0}=2$.
Q3. (a) Write down the divided difference table for e^{x} using the values

x	e^{x}
0.0	1.00000
0.4	1.49182
0.9	2.45960
1.5	4.48169
1.8	6.04965.

Estimate $e^{1.2}$, correct to 4-decimal places, using second and third degree in polation polynomials. If the exact value of $e^{1.2}$ is 3.3201 , which interpola polynomial gives the better estimate? Justify your answer.
(b) Use the Composite Trapezium rule with 2,4 and 8 sub-intervals to estin the integral

$$
I=\int_{1}^{2} e^{x} d x
$$

If the exact value of I is 4.67078, tabulate the error in each case. What you say about the accuracy with respect to step size?

Q4. (a) Solve the system of equations

using the Gaussian elimination.
(b) Solve the system of equations

$$
\begin{aligned}
16 x_{1}-4 x_{2}+4 x_{3} & =24 \\
-4 x_{1}+5 x_{2}+3 x_{3} & =-6 \\
4 x_{1}+3 x_{2}+14 x_{3} & =15
\end{aligned}
$$

by applying the Jacobi iteration (complete 3 iterations with rounding correct to 4-decimal points) using the initial guess $x_{1}^{(0)}=0, x_{2}^{(0)}=0$ and $x_{3}^{(0)}=0$.

