

EASTERN UNIVERSITY, SRI LANKA DEPARTMENT OF MATHEMATICS

EXTERNAL DEGREE EXAMINATION IN SCIENCE $(2008 / 2009)$
THIRD YEAR FIRST SEMESTER (Mar./ May, 2016)
EXTMT 302-COMPLEX ANALYSIS
Re-repeat

1. (a) Define what is meant by a complex-valued function f, defined on a domain $D(\subseteq \mathbb{C})$, has a limit point at $z_{0} \in D$.
i. Prove that if a complex-valued function f hat a limit at $z_{0} \in D$, then it is unique.
ii. Show that

$$
\lim _{z \rightarrow 1+i} \frac{z^{2}-2 i}{z^{2}-2 z+1}=1-i
$$

(b) Let $f: D \subseteq \mathbb{C} \rightarrow \mathbb{C}$. Define what is meant by f being uniformly continuous in a region D.

Show that the function

$$
f(z)=z^{2}
$$

is uniformly continuous in the region $|z|=1$.
Is the function $f(z)=\frac{1}{z}$ uniformly continuous in the same region $|z|=1$? Justify your answer.
2. (a) Let $A \subseteq \mathbb{C}$ be an on open set and let $f: A \rightarrow \mathbb{C}$. Define what is meant by f analytic at $z_{0} \in A$.
(b) Let the function $f(z)=u(x, y)+i v(x, y)$ be defined throughout some ϵ neighbc of a point $z_{0}=x_{0}+i y_{0}$. Suppose that the first order partial derivatives functions u and v with respect to x and y exist everywhere in that neighbc and that they are continuous at $\left(x_{0}, y_{0}\right)$. Prove that, if those partial deri satisfy the Cauchy-Riemann equations.

$$
\frac{\partial u}{\partial x}=\frac{\partial v}{\partial y} ; \quad \frac{\partial u}{\partial y}=-\frac{\partial v}{\partial x}
$$

at $\left(x_{0}, y_{0}\right)$, then the derivative $f^{\prime}\left(z_{0}\right)$ exists.
(c) i. Define what is meant by the function $h: \mathbb{R}^{2} \rightarrow \mathbb{R}$ being harmonic.
ii. Suppose that the function $f(z)=u(x, y)+i v(x, y)$ is a analytic in a dom Show that the function $u(x, y)$ and $v(x, y)$ are harmonic in D.
3. (a) i. Define what is meant by a path $\gamma:[\alpha, \beta] \rightarrow \mathbb{C}$.
ii. For a path γ and a continuous function $f: \gamma \rightarrow \mathbb{C}$, define $\int_{\gamma} f(z) d z$.
(b) Let $a \in \mathbb{C}, r>0$, and $n \in \mathbb{Z}$. Show that

$$
\int_{C(a ; r)}(z-a)^{n} d z=\left\{\begin{array}{cll}
0 & \text { if } & n \neq-1 \\
2 \pi i & \text { if } & n=-1
\end{array}\right.
$$

where $C(a ; r)$ denotes a positively oriented circle with center a and radius r. (State but do not prove any results you may assume). *
(c) State the Cauchy's Integral Formula.

By using the Cauchy's Integral Formula compute the following integrals:
i. $\int_{C(0 ; 2)} \frac{z}{\left(9-z^{2}\right)(z+i)} d z$;
ii. $\int_{C(0 ; 1)} \frac{1}{(z-a)^{k}(z-b)} d z$, where $k \in \mathbb{Z}|a|>1$ and $b<1$.
f1. (a) State the Mean Value Property for Analytic Functions.
(b) i. Define what is meant by the function $f: \mathbb{C} \rightarrow \mathbb{C}$ being entire.
ii. Prove Liouville's Theorem: If f is entire and

$$
\frac{\max \{|f(t)|:|t|=r\}}{r} \rightarrow 0, \quad \text { as } \quad r \rightarrow \infty
$$

then f is constant.
(State any result you use without proof).
iii. Prove the Maximum-Modulus Theorem: Let f be analytic in an open connected set A. Let γ be a simple closed path that is contained, together with its inside, in A. Let

$$
M:=\sup _{z \in \gamma}|f(z)| .
$$

If there exists z_{0} inside γ such that $|f(z)|=M$, then f is constant throughout A. Consequently, if f is not constant in A, then

$$
|f(z)|<M, \quad \forall z_{0} \quad \text { inside } \gamma
$$

(State any result you use without proof)
5. (a) Let $\delta>0$ and let $f: D^{*}\left(z_{0} ; \delta\right) \rightarrow \mathbb{C}$, where $D^{*}\left(z_{0} ; \delta\right):=\left\{z: 0<\left|z-z_{0}\right|<\delta\right\}$. Define what is meant by
i. f having a singularity at z_{0};
ii. the order of f at z_{0};
iii. f having a pole or zero at z_{0} of order m;
iv. f having a simple pole or simple zero at z_{0}.
(b) Prove that $\operatorname{ord}\left(f, z_{0}\right)=m$ if and only if

$$
f(z)=\left(z-z_{0}\right)^{m} g(z), \quad \forall z_{0} \in D^{*}\left(z_{0} ; \delta\right)
$$

for some $\delta>0$, where g is analytic in $D^{*}\left(z_{0} ; \delta\right):=\left\{z: 0<\left|z-z_{0}\right|<\delta\right\}$ and $g\left(z_{0}\right) \neq 0$.
(c) Prove that if f has a simple pole at z_{0}, then

$$
\operatorname{Res}\left(f ; z_{0}\right)=\lim _{z \rightarrow z_{0}}\left(z-z_{0}\right) f\left(z_{0}\right)
$$

where $\operatorname{Res}\left(f ; z_{0}\right)$ denotes the residue of $f(z)$ at $z=z_{0}$.
6. (a) Let f be a analytic in the upper-half plane $\{z: \operatorname{Im}(z) \geqslant 0\}$, except at finitel points, none on the real axis. Suppose there exist $M, R>0$ and $\alpha>1$ such

$$
|f(z)| \leqslant \frac{M}{|z|^{\alpha}}, \quad|z| \geqslant R \quad \text { with } \quad \operatorname{Im}(z) \geqslant 0
$$

Then prove that

$$
I:=\int_{-\infty}^{\infty} f(x) d x
$$

converges (exists) and

$$
I=2 \pi i \times \text { Sum of Residues of } f \text { in the upper half plane. }
$$

Hence evaluate the integral

$$
\int_{-\infty}^{\infty} \frac{\sin x}{1+x^{2}} d x
$$

(You may assume without proof the Residue Theorem)

