

EASTERN UNIVERSITY, SRI LANKA <u>DEPARTMENT OF MATHEMATICS</u> EXTERNAL DEGREE EXAMINATION IN SCIENCE - 2009/201 <u>THIRD YEAR, FIRST SEMESTER(JUNE/SEPT., 2012)</u> <u>EXTMT 302- COMPLEX ANALYSIS</u> <u>(PROPER)</u>

Answer all Questions

Time: Three hours

- Q1. (a) Define what is meant by a complex-valued function f, defined on a domain $D(\subseteq \mathbb{C})$, has a limit at $z_0 \in D$.
 - (i) Prove that if a complex-valued function $f_{\underline{f}}$ has a limit at $z_0 \in D$, then it is unique.
 - (ii) Show that

$$\lim_{z \to i} \frac{3z^4 - 2z^3 + 8z^2 - 2z + 5}{z - i} = 4 + 4i.$$

(b) (i) Let f : S ⊆ C → C and let z₀ be an interior point of S. Define what is meant by f being continuous at z₀ and on S.
 Show that the function

$$f(z) = z^2$$

is continuous at $z = z_0$.

(ii) Is the function

$$f(z) = \frac{3z^4 - 2z^3 + 8z^2 - 2z + 5}{z - i}$$

continuous at z = i? Justify your answer.

- Q2. (a) Let $A \subseteq \mathbb{C}$ be an open set and let $f : A \to \mathbb{C}$. Define what is meant by f bein analytic at $z_0 \in A$.
 - (b) Let the function f(z) = u(x, y) + iv(x, y) be defined throughout some ε neighborhood of a point z₀ = x₀ + y₀. Suppose that the first-order partial derivative of the functions u and v with respect to x and y exist everywhere in that neighborhood and that they are continuous at (x₀, y₀). Prove that, if those partial derivatives satisfy the Cauchy-Riemann equations. u_x = v_y and u_y = -v_x = (x₀, y₀), then the derivative f'(z₀) exists.
 - (c) (i) Show that, if f(z) = u(x, y) + iv(x, y) is analytic in a region S and f'(z) = everywhere in S. Then f is constant throughout S.
 - (ii) Let f(z) = u(x, y) + iv(x, y) be analytic in a region S. Show that the component functions u and v are harmonic in S.
- Q3. (a) (i) Define what is meant by a path $\gamma : [\alpha, \beta] \to \mathbb{C}$.
 - (ii) For a path γ and a continuous function $f: \gamma \to \mathbb{C}$, define $\int_{\gamma} f(z) dz$.
 - (b) Let $a \in \mathbb{C}$, r > 0 and $n \in \mathbb{Z}$. Show that

$$\int_{C(a; r)} (z-a)^n dz = \begin{cases} 0, & n \neq -1 \\ 2\pi i, & n = -1 \end{cases}.$$

- (c) State the Cauchy's Integral Formula. By using the Cauchy's Integral Formula compute the following integrals:
 (i) ∫_{C(0;2)} z/(9-z²) dz;
 (ii) ∫_{C(0;1)} 1/((z-a)^k(z-b)) dz, where k ∈ Z, |a| > 1 and |b| < 1.
- Q4. (a) State the Mean Value Property for Analytic Functions.
 - (b) (i) Define what is meant by the function $f : \mathbb{C} \to \mathbb{C}$ being entire.
 - (ii) Prove the Liouville's Theorem: If f is entire and bounded then f is a stant.

(State any results you use without proof).

Suppose that the function J(z) = u(x, y) + iv(x, y) is analytic everywh in the xy-plane. Prove that u(x, y) is constant throughout the plane. (c) Prove the Maximum-Modulus Theorem: Let f be analytic in an open connected set A. Let γ be a simple closed path that is connected, together with its inside, in A. Let

$$M := \sup_{z \in \gamma} |f(z)|.$$

If there exists z_0 inside γ such that $|f(z_0)| = M$, then f is constant throughout A. Consequently, if f is not constant in A, then

 $|f(z)| < M, \ \forall z \text{ inside } \gamma$

23 AUG 2013

(State any theorem you use without proof)

Q5. (a) Let
$$\delta > 0$$
 and let $f : D^*(z_0; \delta) \to \mathbb{C}$, where
 $D^*(z_0; \delta) := \{z : 0 < |z - z_0| < \delta\}$. Define what is meant by

- i. f having a singularity at z_0 ;
- ii. the order of f at z_0 ;
- iii. f having a pole or zero at z_0 of order m;
- iv. f having a simple pole or simple zero at z_0 .
- (b) Prove that

 $\operatorname{ord}(f; z_0) = m$ if and only if $f(z) = (z - z_0)^m g(z), \forall z \in D^*(z_0; \delta),$

for some $\delta > 0$, where g is analytic in $D(z_0; \delta)$ and $g(z_0) \neq 0$.

(c) Prove that if f has a simple pole at z_0 , then

$$Res(f; z_0) = \lim_{z \to z_0} (z - z_0) f(z_0).$$

3

Q6. Let f be analytic in $\{z : Im(z) \ge 0\}$, except possibly for finitely many singularities none on the real axis. Suppose there exist M, R > 0 and $\alpha > 1$ such that

$$|f(z)| \le \frac{M}{|z|^{\alpha}}, |z| \ge R$$

with $Im(z) \ge 0$.

Then prove that

$$I := \int_{-\infty}^{\infty} f(x) dx$$

converges (exists) and $I = 2\pi i \times$ Sum of Residues of f in the upper half plane.

Hence evaluate the following integrals :

i.
$$\int_{-\infty}^{\infty} \frac{\cos x}{1+x^2} dx ;$$

ii.
$$\frac{1}{2\pi i} \int_{C(0;3)} \frac{e^{zt}}{z^2(z^2+2z+2)} dz.$$