

EASTERN UNIVERSITY, SRI LANKA

DEPARTMENT OF MATHEMATICS

EXTERNAL DEGREE EXAMINATION IN SCIENCE - 2009/201
THIRD YEAR, FIRST SEMESTER(JUNE/SEPT., 2012)

EXTMT 302- COMPLEX ANALYSIS

(PROPER)

Answer all Questions
Time: Three hours

Q1. (a) Define what is meant by a complex-valued function f, defined on a domain $D(\subseteq \mathbb{C})$, has a limit at $z_{0} \in D$.
(i) Prove that if a complex-valued function f_{i} has a limit at $z_{0} \in D$, then it is unique.
(ii) Show that

$$
\lim _{z \rightarrow i} \frac{3 z^{4}-2 z^{3}+8 z^{2}-2 z+5}{z-i}=4+4 i
$$

(b) (i) Let $f: S \subseteq \mathbb{C} \rightarrow \mathbb{C}$ and let z_{0} be an interior point of S. Define what is meant by f being continuous at z_{0} and on S.

Show that the function

$$
f(z)=z^{2}
$$

is continuous at $z=z_{0}$.
(ii) Is the function

$$
f(z)=\frac{3 z^{4}-2 z^{3}+8 z^{2}-2 z+5}{z-i}
$$

continuous at $z=i$? Justify your answer.

Q2. (a) Let $A \subseteq \mathbb{C}$ be an open set and let $f: A \rightarrow \mathbb{C}$. Define what is meant by f beir analytic at $z_{0} \in A$.
(b) Let the function $f(z)=u(x, y)+i v(x, y)$ be defined throughout some ϵ neigt borhood of a point $z_{0}=x_{0}+y_{0}$. Suppose that the first-order partial derivative of the functions u and v with respect to x and y exist everywhere in that neig? borhood and that they are continuous at $\left(x_{0}, y_{0}\right)$. Prove that, if those parti derivatives satisfy the Cauchy-Riemann equations. $u_{x}=v_{y}$ and $u_{y}=-v_{x}:$ $\left(x_{0}, y_{0}\right)$, then the derivative $f^{\prime}\left(z_{0}\right)$ exists.
(c) (i) Show that, if $f(z)=u(x, y)+i v(x, y)$ is analytic in a region S and $f^{\prime}(z)=$ everywhere in S. Then f is constant throughout S.
(ii) Let $f(z)=u(x, y)+i v(x, y)$ be analytic in a region S. Show that tl component functions u and v are harmonic in S.

Q3. (a) (i) Define what is meant by a path $\gamma:[\alpha, \beta] \rightarrow \mathbb{C}$.
(ii) For a path γ and a continuous function $f: \gamma \rightarrow \mathbb{C}$, define $\int_{\gamma} f(z) d z$.
(b) Let $a \in \mathbb{C}, r>0$ and $n \in \mathbb{Z}$. Show that

$$
\int_{C(a ; r)}(z-a)^{n} d z= \begin{cases}0, & n \neq-1 \\ 2 \pi i, & n=-1\end{cases}
$$

(c) State the Cauchy's Integral Formula.

By using the Cauchy's Integral Formula compute the following integrals:
(i) $\int_{C(0 ; 2)} \frac{z}{9-z^{2}} d z$;
(ii) $\int_{C(0 ; 1)} \frac{1}{(z-a)^{k}(z-b)} d z$, where $k \in \mathbb{Z},|a|>1$ and $|b|<1$.

Q4. (a) State the Mean Value Property for Analytic Functions.
(b) (i) Define what is meant by the function $f: \mathbb{C} \rightarrow \mathbb{C}$ being entire.
(ii) Prove the Liouville's Theorem: If f is entire and bounded then f is c stant.
(State any results you use without proof).
Suppose that the function $J(z)=u(x, y)+i v(x, y)$ is analytic everywh in the $x y$-plane. Prove that $u(x, y)$ is constant throughout the plane.
(c) Prove the Maximum-Modulus Theorem: Let f be analytic in an open connected, set A. Let γ be a simple closed path that is connected, together with its inside, in A. Let

$$
M:=\sup _{z \in \gamma}|f(z)| .
$$

If there exists z_{0} inside γ such that $\left|f\left(z_{0}\right)\right|=M$, then f is constant throughout A. Consequently, if f is not constant in A, then

$$
|f(z)|<M, \forall z \text { inside }
$$

(State any theorem you use without proof)

Q5. (a) Let $\delta>0$ and let $f: D^{*}\left(z_{0} ; \delta\right) \rightarrow \mathbb{C}$, where $D^{*}\left(z_{0} ; \delta\right):=\left\{z: 0<\left|z-z_{0}\right|<\delta\right\}$. Define what is meant by
i. f having a singularity at z_{0};
ii. the order of f at z_{0};
iii. f having a pole or zero at z_{0} of order m;
iv. f having a simple pole or simple zero at z.
(b) Prove that
$\operatorname{ord}\left(f ; z_{0}\right)=m$ if and only if $f(z)=\left(z-z_{0}\right)^{m} g(z), \forall z \in D^{*}\left(z_{0} ; \delta\right)$,
for some $\delta>0$, where g is analytic in $D\left(z_{0} ; \delta\right)$ and $g\left(z_{0}\right) \neq 0$.
(c) Prove that if f has a simple pole at z_{0}, then

$$
\operatorname{Res}\left(f ; z_{0}\right)=\lim _{z \rightarrow z_{0}}\left(z-z_{0}\right) f\left(z_{0}\right)
$$

Q6. Let f be analytic in $\{z: \operatorname{Im}(z) \geq 0\}$, except possibly for finitely many singularities none on the real axis. Suppose there exist $M, R>0$ and $\alpha>1$ such that

$$
|f(z)| \leq \frac{M}{|z|^{\alpha}},|z| \geq R
$$

with $\operatorname{Im}(z) \geq 0$.
Then prove that

$$
I:=\int_{-\infty}^{\infty} f(x) d x
$$

converges (exists) and $I=2 \pi i \times$ Sum of Residues of f in the upper half plane.

Hence evaluate the following integrals :
i. $\int_{-\infty}^{\infty} \frac{\cos x}{1+x^{2}} d x$;
ii. $\frac{1}{2 \pi i} \int_{C(0 ; 3)} \frac{e^{z t}}{z^{2}\left(z^{2}+2 z+2\right)} d z$.

