EASTERN UNIVERSITY, SRI LANKA
DEPARTMENT OF MATHEMATICS
EXTERNAL DEGREE EXAMINATION IN SCIENCE -2009/2010
THIRD YEAR FIRST SEMESTER- (June / Sept., 2012)
EXTMT 305 - OPERATIONAL RESEARCH
Time: Three hours.
Answer all questions.

1. A company makes two products (X and Y) using two machines (A and B). Each unit of X requires 50 minutes processing time on machine A and 30 minutes processing time on machine B. Each unit of Y requires 24 minutes processing time on machine A and 33 minutes processing time on machine B. Available processing time on machine A is 40 hours and on machine B is 35 hours per week. Profits per unit of ${ }^{\frac{x}{X}}$ and Y are Rs. 50 and Rs. 30, respectively. Formulate the problem of deciding how much of each product to produce in a week as a linear program. Determine the optimal product mix that will maximize profit using graphical method.
2. Use the Simplex method to solve the following problem.

Maximize $\mathrm{Z}=\mathrm{X}_{1}+2 \mathrm{X}_{2}-\mathrm{X}_{3}$

Subject to the constraints;

$$
\begin{aligned}
& 2 X_{1}+X_{2}+X_{3} \leq 14 \\
& 4 X_{1}+2 X_{2}+3 X_{3} \leq 28 \\
& 2 X_{1}+5 X_{2}+5 X_{3} \leq 30 \\
& X_{1}, X_{2}, X_{3} \geq 0
\end{aligned}
$$

3. Solve the following linear prógram, using Dual Simplex method.

Minimize $\mathrm{Z}=7 \mathrm{X}_{1}+2 \mathrm{X}_{2}+5 \mathrm{X}_{3}+4 \mathrm{X}_{4}$

Subject to the constraints;

$$
\begin{aligned}
& 2 X_{1}+4 X_{2}+7 X_{3}+X_{4} \geq 5 \\
& 8 X_{1}+4 X_{2}+6 X_{3}+4 X_{4} \geq 8 \\
& 3 X_{1}+8 X_{2}+X_{3}+4 X_{4} \geq 4 \\
& X_{1} \geq 0, X_{2} \geq 0, X_{3} \geq 0, X_{4} \geq 0
\end{aligned}
$$

4. Using Revised Simplex method, solve the following linear program.

Maximize $\mathrm{Z}=2 \mathrm{X}_{1}+3 \mathrm{X}_{2}-\mathrm{X}_{3}+4 \mathrm{X}_{4}$

Subject to the constraints;

$$
\begin{aligned}
& X_{1}-2 X_{2}+X_{4}+4 X_{5} \leq 10 \\
& X_{1}+X_{2}+3 X_{3}+2 X_{4} \leq 16 \\
& 2 X_{1}+(1 / 2) X_{2}-X_{3}-X_{4} \leq 8 \\
& X_{1}, X_{2}, X_{3}, X_{4} \geq 0
\end{aligned}
$$

5. A small garment industry has five tailors stitching five different types of garments. All are capable of stitching the five types of garments. The output per day per tailor : profit (Rs.) for each type of garment are given below.

Tailors		Garments					
		2	3	4	5		
A	7	9	4	8	6		
B	4	9	5	7	8		
C	8	5	2	9	8		
D	6	5	8	10	10		
E	7	8	10	9	9		
Profit per garment(Rs.)	2	3	2	3	4		

(i) Formulate the problems as the linear programming by clearly stating the constrair
(ii) Find the optimal assignment that maximizes the profit using Hungarian method.
(iii) What is the profit for the optimal assignment?
06. A company has three factories $\left(\mathrm{F}_{1}, \mathrm{~F}_{2}, \mathrm{~F}_{3}\right)$ and four warehouses $\left(\mathrm{W}_{1}, \mathrm{~W}_{2}, \mathrm{~W}_{3}\right.$, Whothvdifferent locations. The company wants to transport items from factories to warehouses at the minimum total transportation cost. Transportation cost per unit from each factory to each warehouse is as follow.

Factory	Warehouse				Factory Capacity
	W_{1}	$\mathrm{~W}_{2}$	$\mathrm{~W}_{3}$	$\mathrm{~W}_{4}$	
$\mathrm{~F}_{1}$	19	30	50	10	7
$\mathrm{~F}_{2}$	70	30	40	60	$\mathbf{9}$
$\mathrm{~F}_{3}$	40	8	70	20	$\mathbf{1 8}$
Warehouse Requirements	$\mathbf{5}$	$\mathbf{8}$	$\mathbf{7}$	$\mathbf{1 4}$	$\mathbf{3 4}$

Build the mathematical model for the above transportation problem. Find the initial feasible solution by Vogel's Approximation Method (VAM). Check optimality of the solutions using Modified method (MODI) or UV method.

