EASTERN UNIVERSITY, SRI LANKA DEPARTMENT OF AGRICULTURAL ENGINEERING FACULTY OF AGRICULTURE FIRST YEAR SECOND SEMESTER EXAMINATION IN AGRICULTURE – 2017/2018 (Aug/Sept-2020)

AE 1202: APPLIED MECHANICS

Answer all questions

Time: One hour

1. a. Three coplanar forces of magnitudes 5 N, 8 N and 8 N act at the origin O of rectangular coordinate axes. The directions of the forces are as shown in the diagram.

Find the following:

1) Component of the resultant of the three forces in the	
i. x – direction	05 marks
ii. y – direction	05 marks
2) Magnitude and direction of the resultant force.	10 marks

 b. All inclined members in the truss are at 60° to horizontal and length of each member is 2m as shown in the diagram.

Determine the following:

- 1) Forces in all the members of the truss 07 marks
- 2) Indicate the nature of the forces on the members of the truss. 33 marks
- c. Block A weighing 1000 N rests over block B which weighs 2000 N as shown in the figure. Block A is tied to wall with a horizontal string. The coefficient of friction between blocks A and B is 1/4 and between B and floor is 1/3.

1) Draw the free body diagram for block A and B in the following case (i) and (ii), 10 marks

i. *P* is horizontal.

ii. P acts at 30° upwards to horizontal.

2) What should be the value of P to move the block B in each case (i) and (ii). 30 marks

2. a. What do you understand by the terms;

1)	Neutral surface	05 marks
2)	Plane of bending	05 marks
3)	Neutral axis	05 marks
ł)	Bending moment	05 marks

- b. Derive an expression for the moment of the couple required to bend a uniform metallic bar into arc of a circle of small curvature.
 30 marks
- c. A horizontal cantilever of uniform cross-section, A, and length, L, carries a load, W, at the free end. Obtain an expression for the deflection at the free end.
 50 marks
