EASTERN UNIVERSITY, SRI LANKA FACULTY OF COMMERCE AND MANAGEMENT

Final Year First Semester Examination in Bachelor of Commerce (Specialization in Accounting and Finance) - 2018/2019(August 2020)

(Proper/Repeat)

DAF 4043 Portfolio Investment Analysis

Answer All Questions

Time Allowed: 03 Hours

Use of Non Programmable Calculator is permitted.

Use time value table attached.

01. (I) Distinguish between "Financial Investments" and "Physical Investments" in respect to divisibility, liquidity, holding period, and information ability.

(05 Marks)

(II) Briefly explain the two elements of Investment environment.

(05 Marks)

(III) State briefly the steps involved in the investment management process.

(05 Marks)

(IV) What factors might an individual investor take into account in determining his/her investment policy?

(05 Marks)

(Total 20 Marks)

02. (I) The possible returns with associated probabilities of two investments, M and N, are given below:

Dark - Initial	Possible Returns (%)								
Probabilities	Investment M	Investment N							
0.25	16	06							
0.25	12	24							
0.25	10	08							
0.25	14	18							

Required:

Calculate the following for both investments and identify the optimal invest based on the results:

- (a) The Expected Rate of Return
- (b) The Standard Deviation of returns
- (c) Coefficient of Variation of returns

(05 Ma

(II) Securities P, Q and R have the following characteristics:

0.20 0.20 0.20 0.20 0.20	Possible Return (%)								
	Security P	Security Q	Security R						
0.20	- 10	20	occurry N						
0.20	12	10	07						
0.20		16	08						
	45	-15	07						
0.20	-10	10	00						
0.20	13	10	08						
	10	14	10						

Required:

Calculate the following:

- (a) The Co-Variance between returns of the Securities.
- (b) The Correlation Coefficients between returns of the Securities.
- (c) The Expected Rate of Return and the Standard deviation of the returns the portfolios of the securities combined as follow.

Portfolio		Combination	d and the second
	Security P	Security Q	Security R
PPQ	0.5	0.5	occurry R
PPR	0.5	v.0	0.5
PQR		0.6	0.5
P _{PQR}	0.3	0.0	0.4
i ruk	0.3	0.4	0.3

(d) Find the optimal combination for the portfolio P_{PQ} to minimize the risk.

(15 Mar

(Total 20 Mark

The Expected Return, E(R_P) (%), and the Risk, σ_P (%), for the three portfolio investments, A, B, and C are given.

Portfolio	E(R _P) (%)	σ_{P} (%)
PA	16	12
PR	13	10
Pc	16	14

Required:

Explain with a graphical illustration how an investor choose among portfolios as explained by the Markowitz portfolio theory.

(08 Marks)

You are given the following information regarding the security j:

Risk Free Rate (R_f) =12%,

Market Return (Rm) = 16%,

Bata of Security j $(\beta_i) = 1.5$.

Required:

(11)

(111)

Calculate the Expected Rate of Return for security j, (E(R_j) from the above information according to the Capital Assets Pricing Model (CAPM) equation.

(06 Marks)

An Investor owns a portfolio of four securities. The characteristics of the securities and their amounts invested in the portfolio are presented below.

Security	Beta	Amount invested (Rs.000)	Expected Return (%)
NA NA	2.00	4 000	20
IVI	1.50	2 500	15
IV D	1.00	1 500	10
P	1.00	2,000	12
Q	-1.00	2,000	

Required:

- (a) What is the expected rate of return of this portfolio?
- (b) What is the weighted average market risk of the portfolio?
- (c) What would be your recommendation for the investor if he/she wants to reduce the risk in the portfolio?

(06 Marks)

(Total 20 Marks)

04. (I) Illustrate with the diagram how the total risk of portfolio investment is separation into the Systematic Risk and Unsystematic Risk by diversification strategy increasing the number of securities in the portfolio.

(05 Mar

(II) The following are the annual returns of a security of FATE plc and the market for the last five years:

Year 2015 2016	Retur	Returns (%)						
Year	FATE	M						
2015	10	12						
	15	18						
2017	- 05	- 03						
2018	06	08						
2019	12	10						

Required:

- (i) Calculate the beta coefficient for the security of FATE plc. using both variance formula and regression formula.
- (ii) Measure (a) Total Risk, (b) Systematic Risk, and (c) Unsystematic Risk of security of FATE plc. using the relevant coefficients.

(15 Mai

(Total 20 Mar

o5. (I) The decision for investment in shares can be made on the bases of two alternative approaches: (1) using the comparison of current market price and intrinsic value the share or (2) using the comparison of multiples (such as Price/Earnings of State the decision rules for investing in shares using those approaches.

(04 Mar

(II) An investor is engaged in analyzing investment on equity shares of a company, company paid a dividend of Rs.5 per share last year. The investor expects company may pay a dividend of Rs.5.50 at the end of the current year, and Rs. in the following year. After which he expects the dividend will grow at the same for the indefinite period. The required rate of return for the investor is 15%.

Required:

- (i) What is the growth rate of the dividend on the share of the company according to the forecast of the investor?
- (ii) Calculate the intrinsic value of the share of the company according to the investor's forecast using the constant growth dividend based valuation model.
- (iii) If the shares of the company are currently selling in the market for Rs.100 per share, what would be the decision of the investor based on his/her forecasting? Is this share an attractive investment? Explain.

(08 Marks)

- (III) An investor holds an investment on the bonds of the SCR plc having a par value of Rs.1,000 each with coupon rate of 12% per annum payable annually, and the maturity of 10 years.
 - (i) Explain the impact of changes in the market interest rates on the value of bonds.
 - (ii) What will be the value of the bond of the SCR plc if the market interest rate increases to 14% at the end of one year from the date of issue?
 - (iii) What will be the value of the bond of the SCR plc if the market interest rate decreases to 10% when the bond has six years remaining maturity?
 - (iv) If the bond of the SCR plc is selling at Rs.1051.43 at the time the bond has two years remaining maturity, what would be the YTM of the bond?

 (08 Marks)

(Total 20 Marks)

Table A-3 Present Value Interest Factors for One Dollar Discounted at k Percent for n Periods: $PVIF_{k,n} = 1/(1+k)^n$

Period	1%	2%	3%	4%	5%	6%	7%	8%	9%	4007			_					
1	0.9901	0.9804	0.9709	0.9615	0.9524	0.9434	0.9346	0.9259		10%	11%	12%	13%	14%	15%	16%	20%	
2	0.9803	0.9612	0.9426	0.9246	0.9070	0.8900	0.8734	0.9259	0.9174	0.9091	0.9009	0.8929	0.8850	0.8772	0.8696	0.8621	0.8333	0
3	0.9706	0.9423	0.9151	0.8890	0.8638	0.8396	0.8163	0.7938	0.8417	0.8264	0.8116	0.7972	0.7831	0.7695	0.7561	0.7432	0.6944	0
4	0.9610	0.9238	0.8885	0.8548	0.8227	0.7921	0.7629	0.7350	0.7722	0.7513	0.7312	0.7118	0.6931	0.6750	0.6575	0.6407	0.5787	0.
5	0.9515	0.9057	0.8626	0.8219	0.7835	0.7473	0.7629	0.6806	0.7084	0.6830	0.6587	0.6355	0.6133	0.5921	0.5718	0.5523	0.4823	0.
				1	0.7000	0.7410	0.7130	0.0000	0.6499	0.6209	0.5935	0.5674	0.5428	0.5194	0.4972	0.4761	0.4019	0.
6	0.9420	0.8880	0.8375	0.7903	0.7462	0.7050	0.6663	0.6302	0.5000				-	-				
7	0.9327	0.8706	0.8131	0.7599	0.7107	0.6651	0.6227	0.5835	0.5963	0.5645	0.5346	0.5066	0.4803	0.4556	0.4323	0.4104	0.3349	0.
8	0.9235	0.8535	0.7894	0.7307	0.6768	0.6274	0.5820	0.5403	0.5470	0.5132	0.4817	0.4523	0.4251	0.3996	0.3759	0.3538	0.2791	0.:
9	0.9143	0.8368	0.7664	0.7026	0.6446	0.5919	0.5439	-	0.5019	0.4665	0.4339	0.4039	0.3762	0.3506	0.3269	0.3050	0.2326	0.
10	0.9053	0.8203	0.7441	0.6756	0.6139	0.5584	0.5083	0.5002	0.4604	0.4241	0.3909	0.3606	0.3329	0.3075	0.2843	0.2630	0.1938	0.
				0.0700	0.0133	0.5564	0.5083	0.4632	0.4224	0.3855	0.3522	0.3220	0.2946	0.2697	0.2472	0.2267	0.1615	0.
11	0.8963	0.8043	0.7224	0.6496	0.5847	0.5268	0.4754											
12	0.8874	0.7885	0.7014	0.6246	0.5568		0.4751	0.4289	0.3875	0.3505	0.3173	0.2875	0.2607	0.2366	0.2149	0.1954	0.1346	0.0
13	0.8787	0.7730	0.6810	0.6006	0.5303	0.4970	0.4440	0.3971	0.3555	0.3186	0.2858	0.2567	0.2307	0.2076	0.1869	0.1685	0.1122	0.0
14	0.8700	0.7579	0.6611	0.5775	0.5051	0.4688	0.4150	0.3677	0.3262	0.2897	0.2575	0.2292	0.2042	0.1821	0.1625	0.1452	0.0935	0.1
15	0.8613	0.7430	0.6419	0.5553	-	0.4423	0.3878	0.3405	0.2992	0.2633	0.2320	0.2046	0.1807	0.1597	0.1413	0.1252	0.0779	0.0
	-	0.1400	0.0413	0.3333	0.4810	0.4173	0.3624	0.3152	0.2745	0.2394	0.2090	0.1827	0.1599	0.1401	0.1229	0.1079	0.0649	0.0
16	0.8528	0.7284	0.6232	0.5339	0.4581	0.2000												
17	0.8444	0.7142	0.6050	0.5134	0.4363	0.3936	0.3387	0.2919	0.2519	0.2176	0.1883	0.1631	0.1415	0.1229	0.1069	0.0930	0.0541	0.0
18	0.8360	0.7002	0.5874	0.4936		0.3714	0.3166	0.2703	0.2311	0.1978	0.1696	0.1456	0.1252	0.1078	0.0929	0.0802	0.0451	0.0
19	0.8277	0.6864	0.5703	0.4746	0.4155	0.3503	0.2959	0.2502	0.2120	0.1799	0.1528	0.1300	0.1108	0.0946	0.0808	0.0691	0.0376	0.0
20	0.8195	0.6730	0.5537	0.4746	0.3957	0.3305	0.2765	0.2317	0.1945	0.1635	0.1377	0.1161	0.0981	0.0829	0.0703	0.0596	0.0313	0.0
	010100	0.07.00	0.0001	0.4564	0.3769	0.3118	0.2584	0.2145	0.1784	0.1486	0.1240	0.1037	0.0868	0.0728	0.0611	0.0514	0.0261	0.0
21	0.8114	0.6598	0.5375	0.4388	0.0500													
22	0.8034	0.6468	0.5219	0.4220	0.3589	0.2942	0.2415	0.1987	0.1637	0.1351	0.1117	0.0926	0.0768	0.0638	0.0531	0.0443	0.0217	0.0
23	0.7954	0.6342	0.5219	0.4220	0.3418	0.2775	0.2257	0.1839	0.1502	0.1228	0.1007	0.0826	0.0680	0.0560	0.0462	0.0382	0.0181	0.00
24	0.7876	0.6217	0.4919		0.3256	0.2618	0.2109	0.1703	0.1378	0.1117	0.0907	0.0738	0.0601	0.0491	0.0402	0.0329	0.0151	0.00
25	0.7798	0.6095	0.4776	0.3901	0.3101	0.2470	0.1971	0.1577	0.1264	0.1015	0.0817	0.0659	0.0532	0.0431	0.0349	0.0284	0.0126	0.00
	3.7.700	0.0000	0.4//0	0.3751	0.2953	0.2330	0.1842	0.1460	0.1160	0.0923	0.0736	0.0588	0.0471	0.0378	0.0304	0.0245	0.0105	0.00
30	0.7419	0.5521	0.4120	0.2002	0.0044													
35	0.7059	0.5000	0.4120	0.3083	0.2314	0.1741	0.1314	0.0994	0.0754	0.0573	0.0437	0.0334	0.0256	0.0196	0.0151	0.0116	0.0042	0.00
36	0.6989	0.4902	-	0.2534	0.1813	0.1301	0.0937	0.0676	0.0490	0.0356	0.0259	0.0189	0.0139	0.0102	0.0075	0.0055	0.0017	0.00
40	0.6717	0.4529	0.3450	0.2437	0.1727	0.1227	0.0875	0.0626	0.0449	0.0323	0.0234	0.0169	0.0123	0.0089	0.0065	0.0048	0.0014	0.00
50	0.6080	0.4529	0.3066	0.2083	0.1420	0.0972	0.0668	0.0460	0.0318	0.0221	0.0154	0.0107	0.0075	0.0053	0.0037	0.0026	0.0007	*
	0.0000	0.3115	0.2281	0.1407	0.0872	0.0543	0.0339	0.0213	0.0134	0.0085	0.0054	0.0035	0.0022	0.0014	0.0009	0.0006	*	,

Table A-4 Present Value Interest Factors for a One-Dollar Annuity Discounted at k Percent for n Periods: PVIFA = [1 - 1/(1 + k)]|

Period	1%	2%	3%	4%	5%	8%	7%	8%	9%	400/	1 400		1				-	California (management
1	0.9901	0.9804	0.9709	0.9615	0.9524	0.9434	0.9346	0.9259	-	10%	11%	12%	13%	14%	15%	16%	20%	24%
2	1.9704	1.9416	1.9135	1.8861	1.8594	1.8334	1.8080	-	0.9174	0.9091	0.9009	0.8929	0.8850	0.8772	0.8696	0.8621	0.8333	0.8065
3	2.9410	2.8839	2.8286	2.7751	2.7232	2.6730	2.6243	1.7833	1.7591	1.7355	1.7125	1.6901	1.6681	1.6467	1.6257	1.6052	1.5278	1.4568
4	3.9020	3.8077	3.7171	3.6299	3,5460	3.4651	3.3872	2.5771	2.5313	2.4869	2.4437	2.4018	2.3612	2.3216	2.2832	2.2459	2.1065	1.9813
5	4.8534	4.7135	4.5797	4.4518	4.3295	4.2124	-	3.3121	3.2397	3.1699	3.1024	3.0373	2.9745	2.9137	2.8550	2.7982	2.5887	2.4043
			1	7,7010	4.0230	4.2124	4.1002	3.9927	3.8897	3.7908	3.6959	3.6048	3.5172	3.4331	3.3522	3.2743	2.9906	2.7454
6	5.7955	5,6014	5.4172	5.2421	5.0757	4.9173	4.7665	4 0000	4 40 70		-	-						
7	6.7282	6.4720	6.2303	6.0021	5.7864	5.5824	5.3893	4.6229	4.4859	4.3553	4.2305	4.1114	3.9975	3.8887	3.7845	3.6847	3.3255	3.0205
8	7.6517	7.3255	7.0197	6.7327	6.4632	6.2098	5.9713	5.2064	5.0330	4.8684	4.7122	4.5638	4.4226	4.2883	4.1604	4.0386	3.6046	3.2423
9	8.5660	8.1622	7.7861	7.4353	7.1078	6.8017	6.5152	5.7466	5.5348	5.3349	5.1461	4.9676	4.7988	4.6389	4.4873	4.3436	3.8372	3.4212
10	9.4713	8.9826	8.5302	8.1109	7.7217	7.3601	-	6.2469	5.9952	5.7590	5.5370	5.3282	5.1317	4.9464	4.7716	4.6065	4.0310	3.5655
			0.0001	0.1102	1.12.11	7.3001	7.0236	6.7101	6.4177	6.1446	5.8892	5.6502	5.4262	5.2161	5.0188	4.8332	4.1925	3.6819
11	10.368	9.7868	9.2526	8.7605	8,3064	7.8869	7 4007	7 4000										
12	11.255	10.575	9.9540	9.3851	8.8633	8.3838	7.4987	7.1390	6.8052	6.4951	6.2065	5.9377	5.6869	5.4527	5.2337	5.0286	4.3271	3.7757
13	12.134	11.348	10.635	9.9856	9.3936		7.9427	7.5361	7.1607	6.8137	6.4924	6.1944	5.9176	5.6603	5.4206	5.1971	4.4392	3.8514
14	13.004	12.106	11.296	10.563	9.8986	8.8527	8.3577	7.9038	7.4869	7.1034	6.7499	6.4235	6.1218	5.8424	5.5831	5.3423	4.5327	3.9124
15	13.865	12.849	11.938	11,118	10.380	9.2950	8.7455	8.2442	7.7862	7.3667	6.9819	6.6282	6.3025	6.0021	5.7245	5.4675	4.6106	3.9616
		12.040	71.000	11.110	10.300	9.7122	9.1079	8.5595	8.0607	7.6061	7.1909	6.8109	6.4524	6.1422	5.8474	5.5755	4.6755	4.0013
16	14.718	13.578	12.561	11.652	10.838	40.400	5 4494											
17	15,562	14.292	13.166	12.166	11.274	10.106	9.4466	8.8514	8.3126	7.8237	7.3792	6.9740	6.6039	6.2651	5.9542	5.6685	4.7296	4.0333
18	16.398	14.992	13.754	12.659	-	10.477	9.7632	9.1216	8.5436	8.0216	7.5488	7.1196	6.7291	6.3729	6.0472	5.7487	4.7746	4.0591
19	17.226	15,678	14.324	13.134	11.690	10.828	10.059	9.3719	8.7556	8.2014	7.7016	7.2497	6.8399	6.4674	6.1280	5.8178	4.8122	4.0799
20	18.046	16.351	14.877	13.134	12.085	11.158	10.336	9.6036	8.9501	8.3649	7.8393	7.3658	6.9380	6.5504	6.1982	5.8775	4.8435	4.0967
	10.040	10.331	14.077	13.590	12.462	11.470	10.594	9.8181	9.1285	8,5136	7.9633	7.4694	7.0248	6.6231	6.2593	5.9288	4.8696	4.1103
21	18.857	17.011	15.415	44.000	40.004													
22	19.660	17.658	15.937	14.029	12.821	11.764	10.836	10.017	9.2922	8.6487	8.0751	7.5620	7.1016	6.6870	6.3125	5.9731	4.8913	4.1212
23	20,456	18.292	-	14.451	13.163	12.042	11.061	10.201	9.4424	8.7715	8.1757	7.6446	7.1695	6.7429	6.3587	6.0113	4.9094	4.1300
24	21.243	18.914	16.444	14.857	13.489	12.303	11.272	10.371	9.5802	8.8832	8.2664	7.7184	7.2297	6.7921	6.3988	6.0442	4.9245	4.1371
25	22.023	19.523	16.936	15.247	13.799	12.550	11.469	10.529	9.7066	8.9847	8.3481	7.7843	7.2829	6.8351	6.4338	6.0726	4.9371	4.1428
20	22.023	18.523	17.413	15.622	14.094	12.783	11.654	10.675	9.8226	9.0770	8.4217	7.8431	7.3300	6.8729	6.4641	6.0971	4.9476	4.1474
30	25.808	22 200	40.000															7.1714
35	29.409	22.396	19.600	17.292	15.372	13.765	12.409	11.258	10.274	9.4269	8.6938	8.0552	7.4957	7.0027	6.5660	6.1772	4.9789	4,1601
36		24.999	21.487	18.665	16.374	14.498	12.948	11.655	10.567	9.6442	8.8552	8.1755	7.5856	7.0700	6.6166	6.2153	4.9915	4.1644
	30.108	25.489	21.832	18.908	16.547	14.621	13.035	11.717	10.612	9.6765	8.8786	8.1924	7.5979	7.0790	6.6231	6,2201	4.9929	4.1649
40 50	32.835	27.355	23.115	19.793	17.159	15.046	13.332	11.925	10.757	9.7791	8.9511	8.2438	7.6344	7.1050	6.6418	6.2335	4.9966	4.1659
30	39.196	31.424	25.730	21.482	18.256	15.762	13.801	12.233	10.962	9.9148	9.0417	8.3045	7.6752	7.1327	6.6605	6.2463	4.9995	4.1658