ISSN 1391-586X; ©2000 Published by Faculty of Science, Eastern University, Sri Lanka

SEPARATION TECHNIQUES OF FLABELLIFERINS FROM PALMYRAH (Borassus flabellifer L.) FRUIT PULP

D. D. Ariyasena^a, J.K. Nikawala^a, E.R. Jansz^b and A. M. Abeysekera^a

^aDepartment of Chemistry, Faculty of Applied Science, University of Sri Jayewardenepura, Gangodawila, Nugegoda, Sri Lanka.

^bDepartment of Biochemistry, Faculty of Medical Sciences, University of Sri Jayewardenepura, Gangodawila, Nugegoda, Sri Lanka.

(Received 17 June 2000; accepted 31 January 2001)

Abstract

The flabelliferins (steroidal saponins) of palmyrah are of importance due to their significance in food and bioactivity. There are a plethora of flabelliferins and their separation and quantification is a challenge. This paper discusses the methods of purifying flabelliferins and determining the flabelliferin profiles of varying Palmyrah fruit pulps (PFP).

Flabelliferins were separated by a number of techniques, namely flash chromatography, chromatotron, selective solvent extraction, solvent gradient chromatography and medium pressure liquid chromatography (MPLC). The best overall system of separation was MPLC although depending on flabelliferin profile, the other techniques had specific value.

keywords :Palmyrah, bitter principle, MPLC, solvent gradient, flabelliferin profile

1 Introduction

Steroidal saponins from palmyrah were first reported by Jayaratnam[1] who identified a monoglucoside and a monorhamnoside of spirost-5-en- 3β ol. Jansz and D. D. Ariyasena, J.K. Nikawala, E.R. Jansz and A. M. Abeysekera

2.3 DE-SUGARING

This was carried out in two ways, (1) by fermenting the sugars in the fruit pulp using *Saccharomyces cervisiae* $(2 \times 10^7 \text{ cells } 100^{-1} \text{ ml PFP})$ for 4 days and omitting the acetone step[2] or (2) by dry cellulose chromatography[2] either with or without the acetone step.

re naviosers orderes ore touch more and not the market of the

2.4 PURIFICATION OF FLABELLIFERINS

2.4.1 Flash chromatography

Flash chromatography was carried out according to the method described by Nikawala and coworkers[3].

a fraction was subjected to another chromatotron run on new rotors

2.4.2 MPLC (Medium Pressure Liquid Chromatography)

MPLC apparatus of Baeckstrom[7] with Separo columns, FMI pump (model QD-Ossy) and a reservoir to create a continuous gradient was used in a solvent gradient system with CH_2Cl_2 and methanol (99.8:0.2, 99.6:0.4, 98.2:0.8, 96.8:3.2, 93.75:6.25, 3:1, 1:1, 1:3, 6.25:93.75, 3.2:96.8, 0.8:98.2, 0.4:99.6, 0.2:99.8). The isolates were obtained at 75-85 ml (free steroid), 165-170 ml and 180-190 ml.

2.4.3 Solvent gradient column chromatography

The column (2.5 cm in diameter) was packed with silica gel (230-400 mesh and average pore diameter 60Å) in hexane to a length of 25.0 cm. After the introduction of the sample on to the column bed, the polarity of the mobile phase was increased gradually using CH₂Cl₂, ethyl acetate and methanol in different ratios (100:0:0, 90:10:0, 75:25:0, 50:50:0, 25:75:0, 10:90:0, 0:100:0, 0:90:10, 0:80:20, 0:70:30, 0:60:40, 0:50:50, 0:45:55, 0:40:60, 0:35:65, 0:30:70, 0:25:75, 0:20:80, 0:15:85, 0:10:90, 0:0:100). One (1) ml fractions were collected. Thin layer chromatography was carried out to confirm the presence of each flabelliferin.

nputer, Sharp scanner JX 330, image Master 1D Elite ver 2.01, Hoeter Pharmacua

2.4.4 Chromatotron (Harrison Research, model 8924, made in U.S.A)

The rotors should be coated with silica gel G60 PF_{254} of a thickness of either 1mm, 2mm or 4mm depending on weight of the sample. The pump (Lab Pump Jr-FLUID metering Inc, model RHSY, made in U.S.A)was set at a flow rate according to the thickness of the rotor that was being used,

coworkers[2] isolated the bitter principle of palmyrah fruit pulp (PFP) from Kalpitiya and identified it as a tetraglycoside of the same aglycone and coined the term flabelliferin. The bitter principle was called flabelliferin-II (F-II) and another saponin, a tetraglucoside was called flabelliferin-I. This isolation was based on dry cellulose chromatography (desugaring) and crystallisation. Nikawala et al.[3] found that the earlier technique of isolation did not work on complex mixtures of the flabelliferins and had to resort to flash chromatography to separate a mixture of 4 flabelliferins which other than F-II contained F_B (an antimicrobial flabelliferin triglycoside[4]), F_C (a non-bioactive flabelliferin triglycoside) and F_D a non-active flabelliferin diglycoside). Further study by this group showed that there was a large variation in flabelliferin profiles depending on (I) source of PFP and (II) enzymes used for the purpose of debittering[5]. Further the existence of a large variety of flabelliferins meant that there was no universally applicable technique for their isolation. However, the diversity of flabelliferins could be assessed by simple TLC techniques[2]. It is becoming very clear that some of the flabelliferins are bioactive and the end use of PFP could be dictated by the flabelliferins it contains. For example "nonbitter" PFP[6] could be easily utilized as a cordial. Bitter PFP not containing F_B or other antimicrobial factors could be used as substrates for yeast fermentation (ethanol production[7]). Those containing anti-yeast flabelliferins and bitter principle need to be enzymatically hydrolysed[2][8][9][10] before utilization as food particularly the very bitter PFP which can be debittered by a relatively cheap heat stable α -amylase[9]. Therefore many different end uses could be visualized.

The objective of the study was to examine different methods of flabelliferin isolation and attempt to select methods matching flabelliferin profiles of different pulps. The paper is meant to convey to the other researchers, the options available for flabelliferin isolation and quantification.

2 MATERIALS AND METHODS

2.1 FRUITS

Ripe palmyrah fruits of four morphologically distinct types were collected from 20 locations (Jaffna (2), Mannar, Ampara (2), Chilaw, Batticaloa, Puttalam, Trincomalee, Vavuniya, Hambantota, Kurunegala, Anamaduwa (2), Naththandiya, Polonnaruwa (2), Kalpitiya, Anuradhapura (2)) of Sri Lanka. PFP was extracted manually with distilled water in the ratio of 1:2 (v/v).

2.2 EXTRACTION OF CRUDE FLABELLIFERINS

Crude flabelliferins were extracted by the method of Jansz and coworkers^[2] using extraction with methanol, cleaning with petroleum ether and extracting the residue in acetone.

	Pump Scal	
1 mm layer: 2-4 ml/min	90-180	
2 mm layers: 6-8 ml/min	250-350	
4 mm layers: 8-10 ml/min	350-410	

After passing hexane $(100 \ ml)$ to wash out the new plate, the sample dissolved in minimum amount of methanol was introduced. Hexane $(100 \ ml)$ was passed again before increasing the polarity gradually using CH₂Cl₂, ethyl acetate and methanol in different ratios, as described in solvent gradient column chromatography (section 2.4.3) and 1 ml fractions were collected. Thin layer chromatography was conducted with all the fractions in order to confirm the separation.

As there was an impurity exactly overlapping on top of all the separated flabelliferin fractions, each fraction was subjected to another chromatotron run on new rotors with a solvent system of of iso-propanol: ethyl acetate (1:1).

2.4.5 Selective solvent extraction

Crude flabelliferin mixture was dissolved in 20 ml of water and then extracted to ethyl acetate using a separating funnel. TLC was conducted to confirm the separation.

2.5 THIN LAYER CHROMATOGRAPHY

TLC was carried out on pre-prepared silica gel G60 plates (Merck) using n-butanol, ethanol and ammonia in the ratio of 7:3:4 or 7:2:5 and visualized with anisaldehyde spray reagent[2].

2.6 TLC PROFILES AND QUANTIFICATION

The TLC plates after visualizing was scanned (see figure-1 and figure-2)using three types of densitometers for comparison; (a) Shimadzu[3] at 500 nm (b) Advantech[6] (digital, model DM 303, Advante Toyo Kaisha Ltd, Japan) at 300 nm and (c) Pharmacia Biotech computerized densitometer (Compaq Deskpro 2000 5/233 MMX computer, Sharp scanner JX 330, Image Master 1D Elite ver 2.01, Hoefer Pharmacia Biotech Inc, U.S.A) at 500 nm. The plates were scanned ensuring that the spots lay within the range of a linear standard curve obtained by plotting peak area verses μg flabelliferins in each case. This yielded a method of quantification.

•

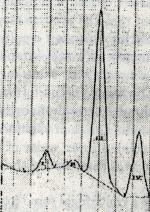


Figure 1: Densitometric scanning of Shimadzu densitometer.

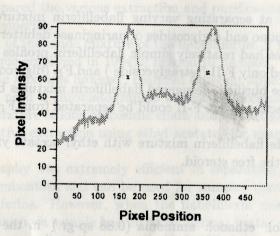


Figure 2: Denistometric scanning of Pharmacia Biotech computerized densitometer Legends: $I - F_D$ II - F-II

3 RESULTS

3.1 SEPARATIONS

The techniques could be used for various purposes for example, quantification of flabelliferins by TLC/densitometer before and after fermentation. This did not alter flabelliferin profile significantly showing that yeast did not produce enzymes to hydrolyze flabelliferins. It was feared that the acetone extraction step which was done to reduce sugars might cause a selective loss of flabelliferins and produce artifactural profiles. However, results showed that the acetone step did not selectively lose any given type of flabelliferin. Omitting this step resulted in very slow dry cellulose chromatography. This gives a distinct advantage to use the acetone extraction step originally used[2]. Even after using this step some sugars still remained and therefore dry cellulose chromatography had to be performed.

Using solvent gradient column chromatography, flabelliferins were separated as bands and eluted from the column depending on their slightly different polarities. The compounds were eluted out of the column in an order of increasing polarity and there by the least polar free steroid (6 mg) came out of the column first and any residual sugar last.

The flabelliferins were eluted by a centrifugal force from the chromatotron in an order of increasing polarity as in the case of solvent gradient column chromatography. Further separations using iso-propanol and ethyl acetate as the cleaning-up solvent system, resulted in pure flabelliferins, F-II, F_C and F_D (the particular sample did not contain F_B).

MPLC was effective at separating varying flabelliferin mixtures as well as free steroids, aglycones, mono and diglycosides of naringinase debittered[2] mixed flabelliferins. Some samples had relatively simple flabelliferin profiles for example those from Chilaw contained only F-II (tetraglycoside) and F_D (diglycoside). These could be separated from the purified, desugared flabelliferin mixtures by the simple technique of solvent extraction. Here F-II could be separated from F_D by extracting F_D into ethyl acetate.

Partition of the crude flabelliferin mixture with ethyl acetate yielded the saponin diglycoside, F_D and the free steroid.

3.2 TLC

1

The system n-butanol: ethanol: ammonia (0.88 sp-gr.) in the ratio of 7:2:5 was found to be the best for separating flabelliferins (table-1). However, when flabelliferin profiles were dominated by short glycosidic chain flabelliferins, the same system in the ratio of 7:3:4 was preferred.

Table-1	:	Rf	values	

Flabelliferin	Rf value
F-II	0.35
FB	0.39
FC	0.41
FD	0.47

Solvent system, n-butanol: ethanol: ammonia (0.88 spgr) in the ratio of 7:2:5.

3.3 QUANTIFICATION ·

In order to quantify flabelliferins a densitometer had to be used to scan the TLC plates. The best resolution of flabelliferins for quantification was by Shimadzu (zig-zag mode) at 500 nm and this was extremely good when the number of flabelliferins in a fruit pulp was large (figure-1). If PFP contained a small number of flabelliferins, the computerized densitometer yielded impressive quantitative scans (figure-2). Using these scans and a standard curve it was possible to quantify flabelliferins.

4 DISCUSSION

Fruit pulps from palmyrah present a large variation in the types of flabelliferin (steroidal saponins) profiles depending on the origin of the fruit pulp[6][7][9]. This variation not only presented difficulties in having one uniform technique for isolation of flabelliferins but also is the determining factor for the end-use of the fruit pulp. In this study we compared the various extraction and purification techniques to assess their merits and demerits.

In the preparation of the crude mixture of the flabelliferins, it became clear that the traditional technique employed in 1994[2] needed to be used.

Separation of crude mixtures however, required different approaches. Samples from Kalpitiya did not need a chromatographic separation technique[2]. Samples containing a simple mixture of long glycosidic chain and a short glycosidic chain can be separated by selective extraction using ethyl acetate (for example the sample from Chilaw).

Flash chromatography was extremely efficient in separating the four flabelliferin mixtures from Hambantota and can be used for samples containing similar or less number of flabelliferins. However, when the flabelliferin mixture is complex (for example the Polonnaruwa sample had 10 flabelliferins) better separation techniques were needed. Solvent gradient chromatography fulfilled this need. The same solvent system could be used faster with the chromatotron and refined further using MPLC. The importance of these separation techniques lie in the fact that pure flabelliferins are needed for testing for bioactivity. Already it is known that F-II (tetraglycoside) is growth retarding (in mice)[6][8] and an inhibitor to the Na⁺/K⁺ pump[5] and further that F_B (triglycoside) is an inhibitor of yeast and bacteria[4]. There may be others that are also bioactive. We also know that some are inactive[4] and this poses interesting structural activity relationships which may have important theoretical implications.

In addition the study has shown that densitometers can be used for quantification. It appears that the specific wavelength sophisticated densitometers are the best for complex flabelliferin profiles while more simple densitometers are sufficient for simple flabelliferin mixtures (four or less number of flabelliferins).

Acknowledgements

The authors thank IPICS SRI:07, NSF RG/95/C/13, NSF RG/99/C/3 and University of Sri Jayewardenepura AS/P/99/3 for financial assistance.

We thank Dr. Mrs. S. Yatawara for valuable advice and Mr. N. Illeperuma for technical support.

References

- M. Jayaratnam (1986). Chemistry and biochemistry of palmyrah products. M.Phil Thesis, Univ. of Jaffna, Sri Lanka.
- [2] E.R. Jansz, J.K Nikawala, J. Gooneratne and K. Theivendirarajah (1994). Studies on bitter principle and debittering of palmyrah fruit pulp, J.Sci Food and Agric 65, 185-189.
- [3] J.K. Nikawala, A.M. Abeysekera and E.R. Jansz (1998). The flabelliferins of palmyrah (Borassus flabellifer L.) fruit pulp. I Isolation by flash chromatography, quantification and saponin related activity, J. Natn Sci Coun, Sri Lanka 25(1), 9-18.
- [4] J.K. Nikawala, S.C. Wijeyaratne, E.R. Jansz and A.M. Abeysekera (1998). Flabelliferins, steroidal saponins from palmyrah (*Borassus flabellifer L.*) fruit pulp. II Preliminary investigations of effect on yeast and selected bacteria, J. NatnSci Coun, Sri Lanka 25(2), 141-150.
- [5] D.D. Ariyasena, S. Jayasekera, J.K. Nikawala, E.R. Jansz, S.C. Wijeyaratne and A.M. Abeysekera (1999). Bioactivity of enzymatically debittered flabelliferins from palmyrah (*Borassus flabellifer L.*) fruit pulp, *Chemistry in Sri Lanka*. 16,45.
- [6] D.D. Ariyasena, E.R. Jansz, S. Jayasekera and A.M. Abeysekera (2000). Inhibitory effect of bitter principle of palmyrah (*Borassus flabellifer* L.) fruit pulp on the growth of ICR mice : Evidence using bitter and non-bitter fruit pulp, *J.Sci Food and Agric.* 80, 1763-1766.
- [7] D.P. Vandebona, S.C. Wijeyaratne, E.R. Jansz and N. Illeperuma (2000). Studies on alcoholic fermentation of different types of fruit pulp from palmyrah (Borassus flabellifer L.) from different locations, Proceedings of Sri Lanka Association for Advancement of Sciences. 26: 172.
- [8] (8) D.D. Ariyasena, S. Jayasekera, E.R. Jansz and A.M. Abeysekera (2000). Effect of palmyrah (*Borassus flabellifer* L.) fruit pulp on weight gain of mice, *Vidyodaya journal of Sciences.* 9 (in press).

12

- [9] D.D. Ariyasena, D.P. Vandebona, E.R. Jansz and A.M. Abeysekera (2000). Preliminary investigations on flabelliferin variations and its enzymatic hydrolysis using palmyrah (*Borassus flabellifer* L.) fruit pulp from varying locations, *Chemistry in Sri Lanka* 17, 28.
- [10] J.K. Nikawala and E.R. Jansz (1994). The effect of Naringinase on sugar utilization by yeast on palmyrah fruit pulp, *Chemistry in Sri Lanka*. 11, 4-5.
- [11] P. Baeckstrom (1998). Baekstrom Separo AB, Developed at Royal Institute of Technology (KTH), Stockholm, Sweden.

Abstract value of value of values aroun and a social social provide the structure of structure of a second second value of the borded of second values of a social social social social social social social social social analysis of social values contract for social social social social social social construction of statistic social for social s

Introduction

Bartication district is located in the flash cash of 211 baries 10 covers a land area of approximately 2463.63 square K m and internal waterway of 229.2 square K m. The district accounts for 3.8% of the country's total area. The boundaries of Bartucalon district are Polanaruwa district in the west. Verugal Am and Hincomaes in the north, Ampara district in the south and Eay of Bengal in the east. The physical isature of the district is flat not exceeding 7.6% yas in height above the sea level (The seature of the district is sandy son and the west is clay suit. The boundaries for the the largen is allowed as more than the total the west is clay suit. The bard boundaries the largen is allowed as any (30.0) once the largen and the seat of the same total sector of the district is sandy son and the west is clay suit. The largen as the the largen is allowed as a count one have and the west is clay suit. The largen and the sectors a count of the sector and the west is clay suit. The largen is a sector of the district is sandy son and the west is clay suit on the sectors and the sector at the sector of the district is sandy son and the vest is clay suit on the sectors of the sector of the district is sandy and the west is clay suit on the sector of the sector of the district is sandy and the sector of the sector of the sectors of the sectors of the district is and the sector of the sector of the sectors of the sectors of the largen is allowed the sector of the sector of the sector of the sectors of the sectors of the district is a sector of the sector of the sector of the sectors of the sectors of the sectors of the sector of the sector of the sector of the sectors of the sectors of the sectors of the sector of the sector of the sector of the sectors of the sectors of the sectors of the sectors of the sector of the sector of the sector of the sector of the sectors of the sectors of the sectors of the sector of the sectors of the sectors of the sector of the sector