EFFECT OF WEED CONTROL AT DIFFERENT STAGES IN THE GROWTH CYCLE ON THE GROWTH AND YIELD OF ONIONS (Allium ascolonicum L)

BY

MISS. DHARSHINI VELUPILLAI

A Research Report Submitted in Partial Fulfilment of the -

Requirement of the

ADVANCED COURSE

IN

FIELD CROP PRODUCTION

for

THE DEGREE OF BACHELOR OF SCIENCE IN

AGRICULTURE

Eastern University Vantharumoolai Chenkallady SRI LANKA 1989

APPROVED BY

18442

Prof.S.Sandanam SUPERVISOR Dean/Faculty of Agriculture, (Presently Vice-Chancellor) Eastern University, Vantharumoolai, Chenkallady, SRI LANKA.

Dr.K. Sabesan Head/Department of Agronomy, Faculty of Agriculture, Eastern University, Vantharumoolai, Chenkallady, SRI LANKA.

PROCESSED Main Library, EUSL

Date 30.01. 1990

Date 27-01-19.90

ABSTRACT

Four Experiments were conducted at the premises of the Eastern University, the first two experiments to study the effect of weed control at different stages in the growth cycle on the growth and yield of onions and the other two to study the effect of different forms and levels of potassium on leaf tip scorch on growth and yield of onions (Allium ascolonicum L.).

Experiment I

Effect of duration of weed-free periods on growth and yield of onions.

. Treatments

T ₁	-	Weedy thro	ougho	but			
Т2	-	Weed-free	for	the	first	2	weeks
Т_3	-	Weed-free	for	the	first	4	weeks
T ₄	-	Weed-free	for	the	first	6	weeks
T	- 1	Weed-free	thro	bughc	but		

At the harvest done at 28 days after planting (28 DAP) weediness for 28 days depressed leaf fresh weight by 58% leaf dry weight by 44%, bulb fresh weight by 43%, bulb dry weight by 43%, root fresh weight by 28%, root dry weight by 24%, number of bulbs by 30% and diameter of bulbs by 27% compared with that in weed-free plots. At the same harvest weed-free condition for 14 days and weediness for 14 days depressed leaf fresh weight by 31% leaf dry weight by 23%, bulb fresh weight by 38%, bulb dry weight by 38%, root fresh weight by 26%, root dry weight by 16%, number of bulbs by 21% and diameter of bulbs by 8% compared to that in weed-free plots. At the second assessment done at 42 DAP weediness for the entire 42 days depressed leaf fresh weight by 72%, leaf dry weight by 58%, build fresh weight by 52%, buld dry weight by 52%, fresh weight roots by 64%, dry weight roots by 67%, number of bulbs by 41%, and diameter of bulbs by 36% compared to that in weed-free plots. In the treatment where the plots remained weed-free for first 2 weeks and weedy for the balance 4 weeks leaf fresh weight was reduced by 63%, leaf dry weight by 61%, bulb fresh weight by 48%, bulb dry weight by 48%, root fresh weight by 57%, root dry weight by 61%, number of bulbs by 36%, and diameter of bulbs by 29% compared with that if weedfree plots.

At the final harvest done at 80 DAP in plots that remained weedy-throughout leaf fresh weight was reduced by 76%, leaf dry weight by 74%, bulb fresh weight by 75%, bulb dry weight by 72%, root fresh weight by 72%, root dry weight by 67%, number of bulbs by 40%, bulb diameter by 56%. In plots that remained weedy for the first 2 WAP and weedy thereafter leaf fresh weight was reduced by 66%, leaf dry weight by 63%, bulb fresh weight by 69%, bulb dry weight by 61%, root fresh weight by 65%, root dry weight by 67%, number of bulbs by 24% and diameter of bulbs by 25%. In plots that for weeks and weedy thereafter leaf fresh weight was reduced by 22%, leaf dry weight by 20%, bulb fresh weight by 23%, bulb dry weight by 20%, foot fresh weight by 46%, foot dryweight by 40%; number lot buibe by 12% and diameter of buib by 28% compared with that in weed free plots throughout.

In plots that remained weed-free for the first 6 WAP leaf fresh weight was reduced by 13%, leaf dry weight similar, bulb fresh weight by 20%, bulb dry weight similar (6%), root fresh weight by 17%, root dry weight similar, number of bulbs similar, diameter of bulbs by 25%.

Leaf number declined from 9 weeks after planting in weedfree throughout treatment and this decline was from 8 weeks, 7 weeks, 6 weeks and 5 weeks after planting in plots that remained weed-free for the first 6 weeks, 4 weeks, 2 weeks and in plots that remained weedy throughout respectively.

Length of leaves declined from 8 WAP in weed-free plots and this declined occured from 7 weeks, 6 weeks, 5 weeks and 3 WAP in plots that remained weed-free for the first 6 weeks, 4 weeks, 2 weeks and in plots that remained weedy througout respectively.

With increase in weed free period dry weight of bulbs increased sharply up to a weed-free period of 6 WAP. A weed-free period of 2 WAP increased yield by 1.3 fold,
4 weeks by 2.8 fold, 6 weeks by 3.3 fold and entire duration by 3.6 fold.

The predominant weed species in the experimental plots were <u>Borreria laevis</u>, <u>Cleome viscosa</u>, <u>Dactyloctinium</u> <u>aegyptium</u>, <u>Hedyotis biflora</u>, <u>Oddenlandia biflora</u> and cyperus species. While there was an increase in population of some species, there was also a decline in others with time.

Fresh weight of bulbs declined with increase in total weed density sharply up to a density of 400 weeds/m² and thereafter increase in weed density did not affect yield which remained almost static at a low level. A similar relationship was also seen for leaf dry weight vs weed density but the decline in leaf dry weight was gradual and levelling off of yield occured at the same weed density of 400 weeds/m².

In Experiment II dry weight of leaves in plots which remained weedy-throughout was reduced by 76% of that in weed-free plots. Leaf dry weight in plots that remained weedy for first 2 WAP and weed-free thereafter, weedy for first 4 WAP and weedy thereafter, weedy for first 6 WAP and weedy thereafter was reduced by 19%,52% and 67% respectively.

In plots that remained weedy-throughout dry weight of bulbs and dry weight of roots was reduced by 84%. In plots that remained weedy for first 2 WAP and weedy thereafter, first 4 WAP and weedy thereafter, 6 WAP and weedy thereafter dry weight of bulbs was reduced by 81%,66% and 20% respectively. For the same treatments reduction in dry weight of roots was by 78%, 52%, and 12% respectively.

Number of bulbs in treatments which remained weedy throughout and weedy for first 2 WAP and weedy thereafter was similar and did not differ significantly. In treatments which remained weedy for first 4 WAP and for first 6 WAP number of bulbs were similar (reduced by 14%). Reduction in number

of bulbs brought about in plots that remained weedy for first 4 WAP, first 6 WAP and throughout were similar and did not differ significantly.

In respect of bulb diameter weediness throughout reduced it by 49% and weediness for first 5, weeks by 47%. Weediness for first 2 WAP and first 4 WAP reduced bulb diameter by 17%.

In Experiment III fresh weight and dry weight of leaves was highest in plants which did not receive any potassium and lowest in plants which received K₂O at the fate of 35.7 kg/ha. Increase in K level did not increase leaf weight.

Dry weight of bulbs were higher in plants which received potassium. Increase in K [eve] increased dry weight of bulbs. Root fresh weight and dry weight were highest in plants which received the highest level (71.5 kg K₂O/ha) of potassium and lowest in plants which did not receive any potassium. Increase in level of potassium increased root weight. Leaf tip scorch was more intense in plants which did not receive any potassium. Degree of scorch was higher in plants which received lower (37.5 kg/ha) level of K. Number of bulbs and diameter of bulbs were not influenced by the level of K.

In Experiment IV fresh and dry weights of leaves were highest in plants which did not receive any potassium. There was no difference in effect due to either levels of K or forms of potassium fertilizer. Increasing level of K increased fresh and dry weight of bulbs. There was no influence of levels of K or forms of potassic fertilizer in fresh or dry weight of bulbs. Fresh and dry weight of roots were lowest in plants which did not receive any potassium. Poot weight increased with increase in level of potassium. There was no influence of forms of potassium fortilizer on root weights. Number of leaves per plant, number of bulbs per plant and length of leaves were not affected by level of K or by form of potassic, fertilizer. Leaf tip scorch was more pronounced in plants which did not receive any potassium. Form of potassium fertilizer did not influence leaf tip scorch.

CONTENTS

		Pag
Abstra	st	
Acknow	ledgement	
Chanter	3.1.7.5 PIBAR heront ond enter Allenaet	
	reduction	1
i inci		10
Chapter	II 3.1.8.1 Fromth and dry micronte of teacher	•
2.Revie	w of literature	4
2.1	Onions-General	4
2.2	Factors affecting yield of crop with	
	special reference to onions	4
	2.2.1 Soil and climate	4
	2.2.2 Varieties	5
	2.2.3 Plant densities	5
	2.2.4 Fertilizers	5
	2.2.5 Irrigation	6
	2.2.6 Pest and disease	6
	2.2.7 Weed competition	7
	2.2.7.1 Weeds and their effect on	
	growth and yield of onions	8
	2.2.7.1.1 Factors involved in influence of	
	weeds on growth and yield of onions	9
	2.2.7.1.2 Effect of density of weeds on growth	10
	2.2.7.1.3 Effect of duration of weed growth on	
	growth of onions	11
	2.2.7.1.4 The concept of critical period of	
	weed growth on yield of crops	12
	2.2.7.1.5 Methods and weed control in onions	13
	2.2.7.1.6 Herbicides used in onion culture	14
	roots and builde	
3. Mate	rials and method	
3.1	Experiment I	15
	3.1.1 Treatments	15
	3.1.2 Location	15
	3.1.3 Lay out and design	16
	3.1.4 Land preparation	16
	3.1.5 Basal fertilizer application	17
	3.1.6 Planting and planting material	17
	3.1.7 Agronomic practices	17
	3.1.7.1 Irrigation	17

je

F	a'a	a	e
	~	3	-

3.1.7.2 Fretilizer	application	17
3.1.7.3 Pest and d	isease control	18
3.1.7.4 Weed contro	01	18
3.1.7.5 Plant heig	ht and number ofleaves	19
3.1.8 Assessment of	growth, yield and yield	
components	Cathol	19
3.1.8.1 Fresh and	dry weights of leaves	
roots and	bulbs	19
3.1.8.2 Number of	bulbs	19
3.1.8.2 Size of bu	lbs	19
3.1.9 Weed assessme	ent	20
3.1.9.1 Weed densi	ty	20
3.1.9.2 Weed compo	onents	20
3.1.9.3 Fresh and	dry weight of weeds	20
3.2 Experiment II		21
3.2.1 Treatments		21
3.2.2 Location		21
3.2.3 Lay out and o	design	21
3.2.4 Land prepara	tion	22
3.2.5 Basal fertil	izer application	22
3.2.6 Planting and	planting material	22
3.2.7 Agronomic pr	actices	22
3.2.7.1 Irrigatio	n é	22
3,2.7.2 Fertilize	r application	22
3.2.7.3 Pest and	disease control	22
3.2.7.4 Weed cont	rol 🛃	23
3.2. Assessment of	growth, yield and yield	
components		24
3.2.8.1 Fresh and	dry weight of leaves	
roots and	bulbs	24
3.2.8.2 Number of	bulbs	24
3.2.8.3 size of b	ulbs	24
3.2.9 Weed assessm	nent	
3.2.9.1 Weed dens	sity	24
3.2.9.2 weed comp	position	24
3.2.9.3 Fresh and	dry weight of weeds	24

			Page
3.3 Experiment III			25
3.3.1 Treatments			25
3.3.2 Location			25
3.3.3 lay out and design			25
3.3.4 Land preparation			26
3.3.5 Basal fertilizer application			26
3.3.6 Planting and planting material			26
3.3.7 Agronomic practices			26
3.3.7.1 Irrigation			26
3.3.7.2 Fertilizer application			26
3.3.7.3 Pest and disease control			26
3.3.7.4 Plant height, number and degree of			
tip scorch			27
3.3.8 Assessment of growth, yield and yield			
components			27
3.3.8.1 Fresh and dry weights of leaves			
roots and bulbs			28
3.3.8.2 Number and diameter of bulbs			28
2. A Europeiment IV			
			28
3.4.1 Treatments			28
3.4.2 Lay out and design			28
3.4.3 Basal fertilizer application		Ś	29
3.4.4 Planting and planting material			29
3.4.5 Agronanic practices			29
3.4.5.1 Irrigation			29
3.4.5.2 Fertilizer application	e F		29
. 3.4.5.3 Pest and disease control			30
3.4.5.4 Weed control			30
3.4.5.5 Plant height and number of leaves		•	30
3.4.6 Assessment of growth, yield and yield			
components			30
3.4.6.1 Fresh and dry weights of leaves			
roots and bulbs			30
3.4.6.2 Number of bulbs and size of bulbs			30
4.Results and discussion			31
4.1 Experiment I			31
4.1.1 Fresh weight of leaves			31
4.1.2 Dry weight of leaves			31
			~ 1

		Page
4.1.3 Fresh weight of bulbs		34
4.1.4 Dry weight of bulbs		37
4.1.5 Fresh weight of roots		37
4.1.6 Dry weight of roots		37
4.1.7 Number of leaves		40
4.1.8 Length of leaves		42
4.1.9 Number of bulbs per plant		42
4.1.10. Diameter of bulbs		· 45
4.1.11 Weed density, weed weight and its		
effect on growth of onions.		45
4.2 Experiment 11		52
4.2.1 Fresh weight of leaves		52
4.2.2 Dry weight of leaves		52
4.2.3 Fresh weight of bulbs		52
4.2.4 Dry weight of bulbs		57
4.2.5 Fresh weightof roots		57
4.2.6 Dry weight of roots		57
4.2.7 Number of bulbs per plant		57
4.2.8 Diameter of bulbs		62
4.3 Experiment III		64
4.3.1 Fresh weight of leaves		64
4.3.2 Dry weightof leaves		64
4.3.3 Fresh weight of bulbs	ć	64
4.3.4 Dry weight of bulbs		64
4.3.5 Fresh weight of roots		64
4.3.6 Dry weight of roots		70
4.3.7 Number of leaves per plant		70
4.3.8 Length of leaves		70
4.3.9 Scorch effect of leaves		70
4.3.10 Number of bulbs per plant	<i>x</i>	70
4.3.11 Diameter of bulbs		70
4.4 Experiment IV		77
4.4.1 Fresh weight of leaves		77
4.4.2 Dry weight of leaves		77
4.4.3 Fresh weight of bulbs		77
4.4.4 Dry weight of bulbs		77
4.4.5 Fresh weight of roots		77