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ABSTRACT

Sequential Pattern Mining is the process of applying data mining techniques to a
sequential database for the purpose of discovering the correlation relationships that
exist among an ordered list of events. The patterns can be used to focus on the retailing
industry, including attached mailing, add-on sales and customer satisfaction. In this
vaper, I present fast and efficient algorithms called AprioriAllSID and GSPSID for
mining sequential patterns that are fundamentally different from known algorithms like
AprioriAll and GSP (Generalized Sequential Patterns). The algorithm has been
implemented on an experimental basis and its performance studied. The performance
study shows that the proposed algorithms have an excellent performance over the best
existing algorithms.

Keywords: Data Mining, Sequential Pattern Mining, ApriorAllSID algorithm,
GSPSID algorithm, Data Sequence.

1. INTRODUCTION

Data Mining, also known as Knowledge discovery in Databases, has attracted a lot of
attention. Because of the progress of data collection tools, large amount of transaction data
have been generated, but such data being archived and not used efficiently [4]. Data Mining
is the method of discovery of useful information such as rules and previously unknown
patterns existing between data items embedded in large databases, which allows more effective
utilization of existing data.
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The problem of mining sequential patterns in a large database of customer transactions was
introduced in [2]. A transaction data typically consists of a customer ID, a transaction ID
and a transaction time associated with each transaction and item bought per-transaction. By
analyzing these customer transaction data, we can extract the sequential patterns such as
"10% of customers who buy both A and B also buy C in the next transaction".

Several algorithms have been proposed to find sequential pattern [2] [22]. An algorithm for
finding all sequential patterns, named AprioriAll, was presented in [2]. First, AprioriAll
discovers all the set of items (itemset) with a user-defined minimum support (large itemset),
where the support is the percentage of customer transactions that contain the itemsets.
Second, the database is transformed by replacing the itemsets in each transaction with the
set of all large itemsets. Last, it finds the sequential patterns. It is costly to transform the
database. In [25], a graph-based algorithm DSG (Direct Sequential Patterns Generation)
was presented. DSG constructs an association graph to indicate the associations between
items by scanning the database once, and generates the sequential patterns by traversing the
graph. Though the disk I/O cost of DSG is very low, the related information may not fit in
the memory when the size of the database is large.

In [22], GSP (Generalized Sequential Pattern) algorithm that discovers generalized Sequential
Patterns was proposed. GSP finds all the frequent sequences without transforming the
database. Besides, some generalized definitions of sequential patterns are introduced in [2]
[3]. First, rime constraints are introduced. Users often want to specify maximum or minimum
time period between adjacent elements. Second, flexible definition of a customer transaction
is introduced. It allows a user-defined window-size within which the items can be present.
Third, given a user-defined taxonomy (is-a hierarchy) over the data items, the generalized
sequential patterns, which includes items spanning different levels of the taxonomy, is
introduced. All the previous algorithms for discovering sequential patterns are serial algorithms.
Finding sequential patterns has to handle a large amount of customer transaction data and
requires multiple passes over the database, which requires long computation time. Thus, we
introduce efficient algorithms for discovering sequential patterns in a large collection of
sequenced data.

In this paper, we consider the new algorithms for mining sequential patterns in sequential
environment. All the earlier algorithms are multiple pass over the data whereas in the proposed
algorithm, the original database is read only and we introduce a new temporary database D'
for the next iterations. After completing the first iteration, we can find the candidate sequence
of size-2 using temporary database D'. Then we can find the candidate k-size sequences
until the candidate sequence or temporary database size is empty. At this stage, the database
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size is reduced and the number of candidate sequences is also reduced. This feature is used
for finding sequential patterns and also reduced the time complexity. So the proposed methods
are more efficient than all other methods like AprioriAll and Generalized Sequential Patterns
(GSP).

The rest of this paper is organized as follows: Section 2 describes the problem of mining
sequential patterns, hi section 3, we propose efficient algorithms namely AprioriAllSID and
GSPSID for discovering sequential patterns. Relative performance study is given in section
4. Section 5 concludes the paper.

2. SEQUENTIAL PATTERN MINING
•

2.1 Statement of the Problem
The problem of mining sequential patterns can be stated as follows: Let I = {i1,i2,..,ira} be a
set of m distinct attributes, also called items. An itemset is a non-empty unordered collection
of items (without loss of generality, we assume that items of an itemset are sorted in increasing
order). All items in an itemset are assumed to occur at the same time. A sequence is an
ordered list of itemsets. An itemset i is denoted as (i} ,i2,... ,ik), where i is an item. An itemset
with k items is called a k-itemset. A sequence s is denoted as (s} —> s 2 —» . . .—>s) , where the
sequence element s. is a s.-itemset. A sequence with k-items (k = X \s.\) is called a k-
sequence. For example, (B—> AC) is a 3-sequence. An item can occur only once in an
itemset, but it can occur multiple times in different itemsets of a sequence.

A sequence p = (p, -> p2 -> ... -> pn) is a subsequence of another sequence q = (qj -> q2

-» ... -»qn), denoted as p c q, if there exist integers i, < i2 <... < in, such that p. c q;. for all
p. For example the sequence (B -> AC) is a subsequence of (AB -> E -»ACD), since the
sequence elements B c AB, and AC cACD. On the other hand the sequence (AB -> E)
is not a subsequence of (ABE), and vice-versa. We say that p is a proper subsequence of q,
denoted as p c q, if p c q and p <z q.

Atransaction T has a unique identifier and contains a set of items, i.e., T cz I. Acustomer C
has a unique identifier and has associated with it a list of transactions {Tj, T2,... ,TJ. We
assume that no customer has more than one transaction with the same time-stamp, so that
we can use the transaction-time as the transaction identifier. We also assume that the list of
customer transactions is stored by the transaction-time. Thus the list of transactions of a
customer is itself a sequence T, —> T2 —»... -> Tn called a customer sequence. The database
D consists of a number of such customer sequences.
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A customer sequence C is said to contain a sequence p, if p c: q i.e., p is a subsequence of
the customer sequence C. The support or frequency of a sequence C is denoted as o(p),
which is the total number of customers that contains this sequence. Given a user-specified
threshold called minimum support (denoted min-sup), we say that a sequence is frequent
if it occurs more than minimum support times. The set of frequent k-sequences is denoted as
Fk. A frequent sequence is maximal if it is not a sub sequence of any other sequence.

The problem of finding sequential patterns can be decomposed into two parts:

i) Generate all combinations of customer sequences with fractional sequence support
(i.e., supportD(C) / |D ) above a certain threshold called minimum support m.

ii) Use the frequent sequences to generate sequential patterns.

The second sub problem is straightforward. However discovering frequent sequences is a
non-trivial issue, where the efficiency of an algorithm strongly depends on the size of the
candidate sequences.

3. AprioriAllSID

In this section we describe the algorithm AprioriAllSID based on [2].

3.1 Description

The AprioriAllSID algorithm is shown in figure 1. The feature of the proposed algorithm is
that the given customer transaction database D is not used for counting support after the first
pass. Rather the set C k is used for determining the candidates' sequences before the pass
begins. Each member of the set Ck is of the form < SID, { Sk } >, where each Skis a
potentially frequent k-sequence present in the sequence with identifier SID. For k-1, C,
corresponds to the database D, although conceptually each sequence i is replaced by the
sequence { i }. For k > 1, C'k is corresponding to customer sequence S is < s.SID,
{s e Ck s contained in t} . If s customer sequence does not contain any candidate
k-sequence, then C'k will not have an entry for this customer sequence.

""

Thus, the number of sequences in the database is greater than the number of entries in C'k.
The number of entries in C'k may be smaller than the number of sequences in database
especially for large value of k. In addition, for large values of k, each entry may be smaller
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than the corresponding sequence because very few candidate sequences may be contained
in the sequence. However, for small values of k, each may be larger than the corresponding
sequence because an entry in Ck includes all candidate k-sequences contained in the sequence.

3.2 Algorithm AprioriAlISID

In figure 1, we present an efficient algorithm called AprioriAlISID, which is used to discover
all sequential patterns in large customer database.

Algorithm AprioriAlISID

1. L, = (Large size-1 sequences}; // result of L-itemset phase
2. C'k = database D;
3. For ( k=2; L k , = 0; k++) do begin
4. Ck = New candidate sequences generated from L k } ;
5. C k = 0;
6. for all entries s e C k_, do begin

// determine candidate sequences in Ck contained in the sequence with
Identifier s.SID

7. Ct = {seCk | s-C[k]) e s.set-of-sequences A (s-C[kj) e s.set-of-sequences};
8. for each customer sequence C in the database do
9. increment the count of all candidate sequences in Ck that are contained in s;
10. if (C, * 0) then C k = C'k + < s.SID, C>;
11. end;
12. Lk = Candidate sequences in Ck with minimum support;
13. End;
14. Answer = uk Lk;

Figure 1: Algorithm AprioriAlISID
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Procedure Candidate-gen (Lk (: frequent (k-l)-itemsets; min-sup: minimum support)
1. For each itemset 1, e Lk_,
2. For each itemset 12 e Lk l

3. If(l1[l]=l2[2])^(l1[2]=
4. c = lj u L2; //join step: generate candidate sets
5. If has-infrequent-subset (c, Lk j) then
6. Delete c; // prune step: remove infrequent candidate sets
7. Else add c to Ck;
8. End if;
9. Return;

Figure 2: Procedure Candidate-gen

Procedure Has-infrequent-subset(c:candidate k-itemset; L^: frequent(k-l)-itemset;

1. For each (k-l)-subsets s of c
2. Ifs g Lklthen
3. Return true;
4. Return false;

Figure 3: Procedure Has-infrequent-subset

Example: Consider the database in figure 4 and assume that minimum support is 2 customer
sequences. By using Candidate-gen procedure in figure 2, with size-1 of frequent sequences
gives the candidate sequence in C2 by iterating over the entries in C '2 and generates C '2 in
step6to 11 offigure 1. The first entry in C', is<{(!)(5)} {2} {3} {4} > corresponding to
customer sequence 10. The Ct at step 7 corresponding to this entry s is {{(1)(5)} {2} {3}
{4}} are members of s.set-of-sequences.

By using Candidate-gen procedure with L2 gives C3. Making pass over the data with C 2

and C3 generates C'3. This process is repeated until there is no sequence in the customer
sequence database.

Lemma. 1: For all k > 1, if the set of (k-l)-sequences when the SIDs of the generating
transactions are kept associated with the candidate CkA is correct and complete and frequent
(k-1) sequence is correct, then the set C( generated in step 7 in the kth pass is the same as
the set of candidate k-sequences in Ck contained in the customer sequence with identifier
s.SID.
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A candidate sequence s = s[l]...s[k] is present in the customer sequence s.SID if and only
if both s, = (s-s[k]) and s2 = (s-s[k-l] are in the customer sequence s.SID. Since the
candidate k-sequence was found by using Candidate-gen (Lk,), all subsequences of s ek
must be frequent. Hence, s, and s2 must be frequent sequences. Thus, if a candidate sequence
s € Ck is contained in the customer sequence s.SID, Sj and s2mustbe members of s.set-of-
sequences since C'k, is complete. A sequence s will be a member of C(. Hence, if c e Ck is
not contained in a customer sequence s.SID, s will not be a member of C
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3.3 Algorithm GSPSID

In figure 3, we propose an efficient algorithm called GSPSID, based on [20], which is used
to discover all generalized sequential patterns in large customer database.

Algorithm GSPSID

1 Compute T*, a set of ancestor of each item, from taxonomy T.
2 L, — {Large size-1 sequences}; // Result of Litemset phase.
3 C', = database D;k = 2;
4 While (Lk , = 0) do Begin
5 Ck = New candidate sequences generated from Lk_j;
6 If(k=2)then
7 Delete any candidate sequence in C2 that consists of a sequence of item

and its ancestors.
8 Delete any ancestors in T* that are not present in any of the candidates in Ck.
9 C k = 0;
10 for all entries s e C k _ { do Begin

// determine candidate sequences in Ck contained in the sequence with Identifier s.SID
11 Ct = {seCk | s-C[k]) e s.set-of-sequences A (s-C[k]) e s.set-of-sequences};
12 for each customer sequence s in the database do
13 Add all ancestors of x in T* to s;
14 Remove any duplicates from s;
15 increment the count of all candidate sequences in Ck that are contained in s;
16 if (C, * 0) then C'k = C'k + < s.SID, Ct>;
17 End;
18 Lk = Candidate sequences in Ck with minimum support;
19 End;
20 Answer = ukLk;

Figure 5: Algorithm GSPSID

3.4 Description

We add optimizations to GSP algorithm, which gives the algorithm GSPSID. In GSPSID
algorithm, given original database D is not used for counting after the first pass. The first
pass of algorithm determines the support of each item, like GSP algorithm. At the end of first
pass, the algorithm knows which items are frequent, i.e., has minimum support. We introduce
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the temporary database D' which is used to determine the candidate sequences before the
pass begins. The member of that temporary database is of the form < SID, {SJ >, where
each Sk is a potentially frequent k-sequence present in the sequence with identifier SID.

For k=l, Cj is the corresponding temporary database D'. If k=2, then we add three
optimizations, based on [2] to reduce the size of the database. If a customer sequence does
not contain any candidate k-sequence, then C' k will not have an entry for this customer
sequence. Thus, the number of sequences in the database is greater than the number of
entry in C'k. Conversely, the number of entries in C' k may be smaller than the number of
sequences in database especially for large values of k. In addition, for large values of k,
each entry may be smaller than the corresponding sequence because very few candidate
sequences may be contained in the sequence. For small values of k, each may be larger than
the corresponding sequence because an entry in Ck includes all candidate k-sequences
contained in the sequence.

3.5 Data Structure used

Both algorithms use same data structures. Each candidate sequence is assigned a unique
number called its SID. Each set of candidate sequence C' k is kept in an array indexed by
the IDs of the sequences in Ck. So, a member of C'kis of the form SID, {ID} >. Each C'k
is stored in a sequential structure.

There are two additional fields maintained for each candidate sequence. They are

1. Generators: This field of sequence Ckstores the IDs of the two maximal (k-1)
sequence, the combination of which generated Ck.

2. Extensions: This field stores IDs of all the sequences Ck+] obtained as an extension
ofCk.

Now, s.set-of-sequence of C'k, gives the IDs of all the (k-l)-candidate sequence contained
in transaction s.SID. For each such candidate sequence Ck , the extensions field gives Sk

the set of IDs of all the candidate k-sequences that are extensions of Ck r For Ckin Sk the
generators field gives the IDs of the two sequences that generated Ck. If these sequences
are present in the entry for s.set-of-sequences, Ck is present in customer sequence s.SID.
Hence we add Ck to Ct. By using this data structure we can efficiently store and process the
candidate sequences.
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4. PERFORMANCE EVALUATION

In this section, we describe the experiments and the performance results of AprioriAllSID
algorithms. We also compare the performance with the AprioriAll and GSP algorithms. We
performed our experiments on an IBM Pentium machine. Using data set generator, we have
simulated the data and test algorithms like AprioriAll, AprioriAllSID, GSP and GSPSID.
We have used the simulated data for the performance comparison experiments. The data
sets are assumed to simulate a customer-buying pattern in a retail environment used in [20].

In the performance comparison, we used the five different data sets. The Table 1 & 2 shows
the performance of AprioriAll, GSP, AprioriAllSID and GSPSID for minimum support 1 %
to 5% for different volume of data. Even though AprioriAllSID and GSPSID seem to be
nearly equal, for massive volume of data, the performance of AprioriAllSID and GSPSID
will be far better than AprioriAll and GSP algorithms.

Table 1: Performance evaluation between AprioriAll and AprioriAllSID algorithms

DB
Size
100K
200K
300K
400K
500K

AprioriAll (Execution Time in Seconds)
1%
187
325
428
559
678

2%
199
339
447
587
691

3%
211
351
465
611
726

4%
228
367
489
638
758

5%
245
384
510
669
793

AprioriAllSID (Execution Tune in Seconds)
1%
98
174
269
346
489

2%
121
192
281
371
514

3%
148
221
301
392
561

4%
164
246
324
415
592

5%
183
265
356
458
636

Table 2: Performance evaluation between GSP and GSPSID algorithms

DB
Size
100K
200K
300K
400K
500K

GSP (Execution Time in Seconds)
1%
149
251
339
426
512

2%
188
289
368
467
541

3%
213

• 308
392
493
570

4%
249
329
421
527
518

5%
274
368
467
569
536

GSPSID (Execution Time in Seconds)
1%
67
123
212
320
404

2%
98
146
258
357
449

3%
121
178
298
398
481

4%
149
204

^332
435
523

5%
162
238
378
481
556
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Table 1 and 2 show the execution times for the five data sets for an increasing value of
minimum support (say 1 % to 5%). The execution times increase for both AprioriAllSID and
AprioriAll algorithms and GSP and GSPSID as the minimum support is decreased because
the total number of candidate sequences increase. AprioriAll algorithm in [2] and GSP [20]
are the multiple passes over the data. So, the execution time is increased with increase of the
customer transactions in the database. In Table 1 and 2, we can conclude that the
AprioriAllSID algorithm is 2 times faster than AprioriAll algorithm and GSP algorithm is 3
times faster than GSPSID for small volume of data and more than the order of magnitude
for the large volume of data. The data sets ranges from giga bytes to tera bytes and the
proposed algorithms will be much faster than AprioriAll and GSP. Thus we conclude that
the proposed algorithms are quite suitable for massive databases.

5. CONCLUSION

We present two new algorithms, AprioriAllSID and GSPSID, for discovering all relevant
generalized association rules between items in massive database of transactions. We compare
AprioriAllSID algorithm with AprioriAll algorithm and GSPSID Algorithm with GSP algorithm
in [ 10]. We presented experimental results, using synthetic data, showing that the proposed
algorithms always outperform AprioriAll and GSP algorithms. The performance gap increases
with the problem size, and range from the factor of two for small problems to more than an
order of magnitude for large problems.
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