NUTRITIONAL EVALUATION OF FINGERMILLET (Eleusine coracana): PROXIMATE COMPOSITION, MINERAL COMPONENTS, \textit{in vitro} PROTEIN DIGESTIBILITY AND TRYPsin INHIBITOR ACTIVITY.

by

Kanthasamy Karunananda

A Research Report

Submitted in Partial Fulfilment of the Requirements of the Advanced Course in FOOD SCIENCE AND TECHNOLOGY for the degree of BACHELOR OF SCIENCE IN AGRICULTURE

University of Peradeniya

Peradeniya

Sri Lanka

1984

Supervisor,
Dr. (Mrs) G. Ravindran,
Lecturer, Department of Agricultural Chemistry, University of Peradeniya, Peradeniya.

Date:

Professor M.W. Thenabadu,
Head, Department of Agricultural Chemistry Faculty of Agriculture, University of Peradeniya, Peradeniya.

Date:
ABSTRACT

Millet constitute a major source of energy and protein for many of the rural people in Asia and Africa. The nutritional criteria for cereal improvement are better understood today and in this preliminary study three varieties of finger millet, namely Co 10, MI 302 and KM 1 were analysed for the proximate composition, mineral components, in vitro protein digestibility and trypsin inhibitor activity.

The protein content of the three finger millet varieties ranged from 11.9 percent to 12.4 percent, fat 1.5 percent and crude fibre 1.9 percent to 2.2 percent. The various mineral components determined are calcium, magnesium, sodium, manganese, copper, iron, potassium and phosphorus. Though potassium is the predominant major element in all three varieties, they also contained high amounts of calcium (241 - 246 mg/100g.) and phosphorus (200 - 280 mg/100g.). The in vitro protein digestibility of the three finger millet varieties ranged from 64.8 to 74.7 percent. The nutritional studies revealed the presence of trypsin inhibitor in finger millet.
LIST OF CONTENTS.

ABSTRACT i
ACKNOWLEDGEMENTS ii
LISTS OF CONTENTS iv
LIST OF FIGURES vi
LIST OF TABLES viii

1. INTRODUCTION 1

2. REVIEW OF LITERATURE 4

2.1. Chemical Composition 5

3. MATERIALS AND METHODS 15

3.1. Materials 15

3.1.1. Samples 15

3.1.2. Chemicals 15

3.2. Methods 15

3.2.1. Sample Preparation 15

3.2.2. Determination of Proximate Composition 15

3.2.2.a Moisture Determination 15

3.2.2.b Crude Protein Determination 16

3.2.2.c Crude Fat Determination 16

3.2.2.d Crude Fiber Determination 16

3.2.2.e Ash Determination 16

3.2.3. Determination of Mineral Components 17

3.2.3.a Phosphorus Determination 17

3.2.4. Determination of in vitro Protein Digestibility 18

3.2.5. Determination of Trypsin Inhibitor Activity 19