INTERVARIETAL HYBRIDIZATION AND EVALUATION OF FIPROGENIES IN EGGFLANT (Solanum melongena L.)

BY

ROPALAPILIAI MANIWANNAN

A RESEARCH REPORT

SUBMITTED IN PARTIAL FULFILMENT OF THE

REQUIREMENT FOR THE ADVANCED COURSE

IN

AGRICULTURAL BIOLOGY

FOR

THE DEGREE OF BACHELOR OF SCIENCE IN AGRICULTURE FACULTY OF AGRICULTURE EASTERN UNIVERSITY, SRI LANKA,

CHENKALADY

1998

APPROVED BY

Y. Buch and

(Dr.V.Arulnandhy, Senior lecturer) SUPERVISOR Dept of Agronomy **Faculty of Agriculture** Eastern University, Sri Lanka. Chenkalady. 16-02-1999

36948

-

(Dr. S. Raveendranath, Senior lecturer) HEAD / AGRONOMY **Dept of Agronomy Faculty of Agriculture** Eastern University, Sri Lanka. Chenkalady.

Date:

Date:

PROCESSED Main Library, EUSL

ABSTRACT

This study was under taken primarily to estimate the heterotic effect of selected important agronomic characteristics in F, hybrids of the crosses between two local varieties (Palugamam purple and Palugamam white) and two exotic varieties (Slimijim and SM-6-6) of brinjal (Solanum melongena L.) and their reciprocal crosses also to establish correlation among selected agronomic characters with yield.

The experiment for this study was carried out at the Eastern university Vantharumoolai located in the eastern region of Sri Lanka during the period of July to November, 1998.

Four inbred parents Slimjim (origin in Italy), SM-6-6 (origin in India) from AVRDC, Taiwan; Palugamam purple and Palugamam white (from Batticaloa district) were included in this study along with the F_1 hybrids of the crosses between Slimjim x Palugamam purple, Slimjim x Palugamam white, SM-6-6 x Palugamam purple, SM-6-6 x Palugamam white and their reciprocals.

All the treatments were arranged in a Randomized Complete Block Design (RCBD) with three replications. Data collection commenced with the initiation of field emergence of the seedling and terminated with the last harvest.

The following Agronomic characters were considered; height at first flowering, height at first harvest, height at last harvest, days to first flowering, number of long styled flower in a cluster, number of fruits per cluster, number of fruits per plant, fruit weight at first, eighth and last harvest, fruit length at first, eighth and last harvest, fruit

i

girth at first, eighth, and last harvest ,total yield and the shoot and fruit borer damage.

The collected data were subjected to statistical analysis of variance (ANOVA), mean comparison-using DMRT and a correlation analysis between the important agronomic characters were also performed.

In this study F, hybrids have shown heterobeltiosis (better than better parent or over dominance), incomplete dominance and additive gene effect for the selected agronomic characters.

All F_1 hybrids showed significantly higher yield than their parents and significant heterotic effect in total yield (p=0.05). The results indicated that there was a possibility to uplift the yield up to 80% by cultivating the F_1 hybrids of the crosses rather than their parents. Heterobeltiosis has been observed for plant height at first flowering under the influence of over dominance.

Since the F, hybrids showed lower values than mid parent value but very closer to mid parent value for number of fruits per plant and number of long styled flower in a cluster which can be attributed to the additive gene effect and exploitation of hybrid vigour may not be possible for these characters.

All F, hybrids were early to reach first harvest, the earliness is considered a genetic advantage in crop improvement. Weight, length and girth of fruit were found to be under the influence of incomplete dominance gene action, leading to heterotic which is important to increase the total yield in brinjal.

Positive correlation indicating the direct relationship was observed between yield and yield components such as fruit weight, girth and length and yield also positively correlated with height at first flowering , height at first harvest and height at last harvest.

It is apparent that selection is to be aimed for high value of fruit weight, length and girth to uplift the yield. Among the organoleptic characters, fruit colour was influenced by incomplete dominance gene effect and fruit shape was cylindrical in all F, hybrids, which is a desirable character for selection.

Moderately resistant to shoot and fruit borer insect was apparently seen in the hybrids of the crosses between Slimjim x Palugamam purple, Palugamam purple x Slimjim and the parent Slimjim under field condition. Therefore selection of genotypes with moderately resistant to shoot and fruit borer is possible from these crosses. However further investigation is needed to confirm the estimated resistance.

The results of this experiment revealed that heterosis would be exploited for many of the important agronomic characters including yield in brinjal and hence development of F, hybrid from varieties of diverse origin would be considered a successful attempt in brinjal, providing suitable parents are selected with a great accuracy.

and my sincere thanks to the academic and non academic staff of

iii

CONTENTS

3

	Page number
Abstract	1
Acknowledgement	iv
Contents	V
Lists of table	×
List of figure	×i
List of plates	xi
CHAPTER .01 INTRODUCTION.	17
	19`
1.0 Introduction	1 -5
Ver coment.	
CHAPTER .02 REVIEW OF LITERATURE	
2.10.12 availation of egg plant cultivars and	
2.1 Origin and distribution of brinjal	06
2.2 Taxonomy	06
2.3 Common names of brinjal	07
2.4 Areas of cultivation	07
2.5 Environmental response	07
2.6 Botany	07
2.6.1 Root	08
2.6.2 Stem	08
2.6.3 Leaves	08
2.6.4 Flower biology	08
2.6.4.1 Types of flower	08
2.6.4.2 Anthesis	09
2.6.4.3 Fruitset	09
2.6.5 Fruits	09
2.6.5.1 Storage of fruits	10
2.7 Seed production	10

2.8 Importance of brinjal	10
2.8.1 Nutritional importance	10
2.8.1.1 Composition of brinjal	11
2.8.2 Medicinal importance	13
2.8.3 Economic importance	13
2.9 Crop improvements	14
2.9.1 Yield and yield components	14
2.9.2 Inheritance	15
2.9.2.1 Qualitative	15
2.9.2.2 Quantitative	16
2.9.2.3 Hybridization	17
2.9.2.4 Hybrid vigour	17
2.10 Eggplant improvement programme at AVRDC	19
2.10.1 Genetic resources enhancement and varietal	
development.	20
2.10.1.1. Genetic resource activity	20
2.10.1.2 .Evaluation of egg plant cultivars and	
germplasm	20
2.10.1.3. AVRDC egg plant germplasm collection, 1995	20
2.11. Brinjal varieties at global level	22
2.12. Interspecific hybridization	23
2.13 .Innovative Technology in the improvement in	
egg plant.	24
2.13.1 .Genetic engineering in egg plant improvement	24
2.13.2. Somatic hybrid in egg plant	26
2.13.2.1 Somatic hybrid in eggplant obtained by	35
PEG/DMSO fusion of gamma-irradiated	35
mesophyll protoplast.	26
2.13.2.2 Production and charactrization of fertile Somatic	
hybrid plant.	27

3

CHAPTER. 04 RESULTS AND DISCUSSION

4.1 Fruit yield for figure breeding plants utilizing the	39
4.2 Number of fruits per plant	43
4.3 Plant height at first flowering	46
4.4 Plant height at first harvest	49
4.5 Plant height at last harvest	49
4.6 Days to first harvest	49
4.7 Fruit weight	53
4.7.1 Fruit weight at first harvest	53
4.7.2 Fruit weight at eight harvest	53
4.7.3 Fruit weight at last harvest	54
4.8 Fruit length	62
4.8.1 Fruit length at first harvest	62
4.8.2 Fruit length at eight harvest	62
4.8.3 Fruit length at last harvest	63
4.9 Fruit girth	70
4.9.1 Fruit girth at first harvest	70
4.9.2 Fruit girth at eighth harvest	70
4.9.3 Fruit girth at last harvest	71
4.10 Number of fruits per cluster	78
4.11 Long styled flower in a cluster	79
4.12 Reaction to shoot and fruit borer	80
4.13 Correlation between yield and yield components	V,
and plant characters	83
4.14 Other characters.	85
4.14.1 Colour of the fruit	85
4.14.2 Shape of the fruit	86
4.14.3 Characteristic of the calyx	87
4.14.4.Fruit characters in relation to	
shoot and fruit borer	88

CHAPTER. 03 MATERIALS AND METHODS.

3.1 Location	29
3.2 Variety of Brinjal used	29
3.3 The varieties and F1 hybrids	30
3.4 Experimental design arvest	4 31
3.5 Block size	431
3.6 Spacing	31
3.7 Agronomic practices	531
3.7.1 Land preparations harvest	32
3.7.2 Manure and fertilizer application	32
3.7.3 Transplanting last havest	32
3.7.4 Irrigation	633
3.7.5 Weed control	33
3.7.6 Pest and disease control	33
3.8 Measurement and Observation	33
3.8.1 Plant height	34
3.8.2 Days to first harvest vest	7 34
3.8.3 Number of long styled flower	34
3.8.4 Number of fruits per cluster	34
3.8.5 days to first harvest cluster &	35
3.8.6 Length of fruit en in a cluster	35
3.8.7 Girth circumference of fruits	35
3.8.8 Mean weight of the fruit and yield components	35
3.8.9 Number of fruits per plant	35
3.8.10 Yield estimation	35
3.8.11 Number of shoot and fruit borer damaged fruits	35
3.9 Other morphological characters	36
3.10 Statistical analysis the calva	36