DEVELOPMENT OF MAIZE - SOY BASED SUPPLEMENTARY FOOD AND EVALUATION OF QUALITY PARAMETERS

By

SOMASUNDARAM SUTHARSAN

A RESEARCH REPORT
SUBMITTED IN PARTIAL FULFILMENT OF
THE REQUIREMENTS FOR THE
ADVANCED COURSE

IN

FOOD SCIENCE AND TECHNOLOGY

FOR

THE DEGREE OF

BACHELOR OF SCIENCE IN AGRICULTURE

FACULTY OF AGRICULTURE
EASTERN UNIVERSITY, SRI LANKA

2000

Approved By

39429

Dr.(Mrs).T.Mahendran
Head/Dept. of Agronomy
Faculty of Agriculture
Eastern University
Sri Lanka.
Chenkalady.
Date:.../1/2001.

Mr.T.D.W.Siriwardena
Supervisor.
Head,
Soybean Food research Unit
Gannoruwa.
Peradeniya.
Date:.../1/2001.
Throughout history, hunger and malnutrition, caused by a lack of nutrients or by poor health, particularly infectious diseases, which prevent the body from absorbing and utilizing food efficiently.

Studies were conducted to develop low cost nutritious Maize – Soy based supplementary food by using less capital intensive method. In addition, green gram and chickpea were added to increase the organoleptic properties and to enhance the consumer acceptability.

Proximate analysis indicated that the blend contains flours of maize, soybean, green gram and chickpea have high protein content and low fat content which is suitable for human consumption.

Sensory evaluation reveals that there is no significant difference among the developed blends. However, comparatively higher percentage of panelists selected the blend which consist flours of maize, soybean, green gram and chickpea as the best.

Moisture sorption studies were conducted to find out the ideal moisture level of the blend for long term storage. Based on the experiment the B.E.T (Brunner-Emmet-Teller) monolayer values were calculated at 30 °C and 40 °C temperatures and the values were 3.19 g moisture / 100 g dry weight and 3.05 g moisture / 100 g dry weight, respectively.
CONTENTS

<table>
<thead>
<tr>
<th>Section</th>
<th>Page</th>
</tr>
</thead>
<tbody>
<tr>
<td>ABSTRACT</td>
<td>i</td>
</tr>
<tr>
<td>ACKNOWLEDGEMENTS</td>
<td>ii</td>
</tr>
<tr>
<td>CONTENTS</td>
<td>iii</td>
</tr>
<tr>
<td>LIST OF TABLES</td>
<td>viii</td>
</tr>
<tr>
<td>LIST OF FIGURES</td>
<td>ix</td>
</tr>
<tr>
<td>LIST OF PLATES</td>
<td>x</td>
</tr>
<tr>
<td>ABBREVIATIONS</td>
<td>xi</td>
</tr>
</tbody>
</table>

CHAPTER 1

1.0 INTRODUCTION

CHAPTER 2

2.0 REVIEW OF LITERATURE

2.1 NUTRITION AND ITS IMPORTANCE

2.1.1 NUTRITION SCIENCE

2.1.2 THE NUTRIENTS

2.1.3 FUNCTIONS OF NUTRIENTS

2.1.3.1 Carbohydrates

2.1.3.2 Proteins

2.1.3.3 Fats

2.1.3.4 Vitamins

2.1.3.5 Minerals

2.2 MAIZE

2.2.1 IMPORTANCE OF MAIZE

2.2.2 TYPES OF CORN GRAINS

2.2.3 BIOCHEMICAL CHARACTERISTICS OF MAIZE

2.2.4 UTILIZATION OF MAIZE

2.2.4.1 In Human diets

2.2.4.2 Feed Uses

2.2.5 PROCESSING OF MAIZE

2.2.6 NUTRITIVE VALUE
2.2.7 BY PRODUCTS OF MAIZE
 2.2.7.1 Agricultural Uses 10
 2.2.7.2 Industrial Uses 11

2.3 SOYBEAN
 2.3.1 IMPORTANCE OF SOYBEAN 11
 2.3.2 NUTRITIONAL VALUE OF SOYBEAN 12
 2.3.3 COMPOUNDS CONTRIBUTING TO THE BEANY ODOR OF SOY PROTEIN ISOLATES 13
 2.3.4 CURRENT UTILIZATION OF SOYBEANS 14
 2.3.5 EFFICIENCY OF INACTIVATION OF TRYPsin INHIBITORS AND HAEMAGLUTININS BY ROASTING OF SOYBEAN 16

2.4 MUNGBEAN
 2.4.1 NUTRITIONAL QUALITY OF MUNGBEAN 18
 2.4.2 COMPOSITION OF WHOLE GRAIN AND SPLIT DHAL MUNGBEAN 18
 2.4.3 DIGESTIBILITY BY PROTEOLYTIC ENZYMES 19
 2.4.4 FLATULENCE FACTOR 20
 2.4.5 FEEDING TRIALS WITH MUNGBEAN DIETS 21

2.5 CHICKPEA
 2.5.1 UTILIZATION OF CHICKPEA 22
 2.5.2 NUTRITIONAL QUALITY 23
 2.5.2.1 Carbohydrates and protein 23
 2.5.2.2 Fat and Crude fibre 25
 2.5.2.3 Minerals and Vitamins 26
 2.5.3 EFFECT OF PROCESSING ON THE NUTRITIONAL QUALITY OF CHICKPEA BASES PRODUCTS 26

2.6 SENSORY EVALUATION
 2.6.1 DEFINITION AND USES OF SENSORY EVALUATION 27
2.6.1.1 Definition 27
2.6.1.2 Uses 28
2.6.2 PREPARING FOR THE TEST 28
 2.6.2.1 Testing Area 28
 2.6.2.2 Testing Setup 28
 2.6.2.3 Lighting 28
 2.6.2.4 Testing Schedule 29
2.6.3 PREPARING SAMPLES 29
2.6.4 SELECTION AND TRAINING OF PANELISTS 29
2.6.5 MULTIPLE COMPARISON TEST 29

2.7 MOISTURE SORPTION ISOTHERM STUDIES 30
 2.7.1 WATER AND WATER ACTIVITY 30
 2.7.2 MOISTURE SORPTION ISOTHERM 31
 2.7.3 SORPTION ISOTHERM METHODS 32
 2.7.4 MONOLAYER STABILITY VALUE (M₀) 33
 2.7.5 B.E.T MONOLAYER CALCULATION 33

CHAPTER 3

3.0 MATERIALS AND METHODS 34
3.1 RAW MATERIALS 34

3.2 PREPARATION OF FLOURS 34
 3.2.1 PREPARATION OF SOYBEAN FLOUR 34
 3.2.2 PREPARATION OF MAIZE FLOUR 34
 3.2.3 PREPARATION OF GREENGRAM FLOUR 35
 3.2.4 PREPARATION OF CHICKPEA FLOUR 35

3.3 DEVELOPMENT OF DIFFERENT COMBINATION OF BLENDS 35
 3.3.1 BLEND – 1 35
 3.3.2 BLEND – 2 35
 3.3.3 BLEND – 3 36
3.4 EQUIPMENT USED FOR THE PREPARATION OF BLENDS

3.4.1 JACKETED KETTLES
3.4.2 ELECTRIC DRIER
3.4.3 MICROPULVERISER
3.4.4 MECHANICAL DE-HULLER

3.5 PROXIMATE ANALYSIS

3.5.1 DETERMINATION OF MOISTURE CONTENT
3.5.2 DETERMINATION OF ASH CONTENT
3.5.3 DETERMINATION OF CRUDE PROTEIN
3.5.4 DETERMINATION OF CRUDE FAT
3.5.5 DETERMINATION OF CRUDE FIBER
3.5.6 DETERMINATION OF TOTAL SUGAR
3.5.7 DETERMINATION OF SOLUBLE CARBOHYDRATE

3.6 SENSORY EVALUATION

3.6.1 MATERIALS FOR THE SENSORY EVALUATION
3.6.2 CORDING THE SAMPLE
3.6.3 THE CODE NUMBERS DENOTED THE FOLLOWING SAMPLES
3.6.4 PREPARATION OF SAMPLES FOR PANEL TESTING
3.6.5 INSTRUCTIONS FOR THE TASTE PANEL
3.6.6 EVALUATION OF THE SAMPLES BY PANELIST
3.6.7 STATISTICAL ANALYSIS

3.7 MOISTURE SORPTION STUDIES

3.7.1 MATERIALS
3.7.2 PREPATION OF SORPTION ISOTHERM DETERMINATION UNIT
3.7.3 DETERMINATION OF MOISTURE SORPTION
CHAPTER 4

4.0 RESULTS AND DISCUSSION

4.1 PROXIMATE COMPOSITION OF THE DEVELOPED BLENDS

4.2 SENSORY EVALUATION OF THE SAMPLES

4.2.1 TASTE

4.2.2 COLOUR

4.2.3 FLAVOUR

4.2.4 OVERALL ACCEPTABILITY

4.3 MOISTURE SORPTION ISOTHERM STUDIES

4.3.1 MOISTURE SORPTION DATA

4.3.1.1 Moisture sorption data at 30 °C

4.3.1.2 Moisture sorption data at 40 °C

4.3.2 B.E.T MONOLAYER VALUES

4.3.2.1 B.E.T Monolayer value at 30 °C

4.3.2.2 B.E.T Monolayer value at 40 °C

CHAPTER 5

5.0 CONCLUSIONS

SUGGESTIONS

LITERATURE CITED

APPENDIX