PERMANENT REFERENCE

DEVELOPMENT OF MAIZE - SOY BASED SUPPLEMENTARY FOOD AND EVALUATION **OF QUALITY PARAMETERS**

By

SOMASUNDARAM SUTHARSAN

A RESEARCH REPORT SUBMITTED IN PARTIAL FULFILMENT OF THE REQUIREMENTS FOR THE ADVANCED COURSE

IN

FOOD SCIENCE AND TECHNOLOGY

FOR

THE DEGREE OF

BACHELOR OF SCIENCE IN AGRICULTURE

FACULTY OF AGRICULTURE EASTERN UNIVERSITY, SRI LANKA

Δ

2001

Mr.T.D.W.Siriwardena Supervisor, Head, Soybean Food research Unit Eastern University Gannoruwa. Peradeniya. Date: 11.01.2001

2000 Approved By 39429

Thehenohan

Dr.(Mrs).T.Mahendran Supervisor, Faculty of Agriculture Sri Lanka. Chenkalady. Date: 15/01/2001

Dr.(Mrs).T.Mahendran Head/Dept. of Agronomy Faculty of Agriculture **Eastern University** Sri Lanka. Chenkalady.

MEAD Dept. of Agronomy Faculty of Agriculture Eastern University, Sri Lanka. PROCESS

ABSTRACT

Throughout history, hunger and malnutrition, caused by a lack of nutrients or by poor health, particularly infectious diseases, which prevent the body from absorbing and utilizing food efficiently.

Studies were conducted to develop low cost nutritious Maize – Soy based supplementary food by using less capital intensive method. In addition, green gram and chickpea were added to increase the organoleptic properties and to enhance the consumer acceptability.

Proximate analysis indicated that the blend contains flours of maize, soybean, green gram and chickpea have high protein content and low fat content which is suitable for human consumption.

Sensory evaluation reveals that there is no significant difference among the developed blends. However, comparatively higher percentage of panelists selected the blend which consist flours of maize, soybean, green gram and chickpea as the best.

Moisture sorption studies were conducted to find out the ideal moisture level of the blend for long term storage. Based on the experiment the B.E.T (Brunner-Emmet-Teller) monolayer values were calculated at 30 $^{\circ}$ C and 40 $^{\circ}$ C temperatures and the values were 3.19 g moisture / 100 g dry weight and 3.05 g moisture / 100 g dry weight, respectively.

i

CONTENTS

ABSTRACT	AGE i
ACKNOWLEDGEMENTS	ii
CONTENTS	iii
LIST OF TABLES	viii
LIST OF FIGURES	ix
LIST OF PLATES	x
ABBREVIATIONS	xi
2.3.4 CURRENT CILIZATION OF ROYBEAMS	14.
CHAPTER 1	
1.0 INTRODUCTION	1
BOAL TWO OF ADYBEAND THE STATE	
CHAPTER 2	
2.0 REVIEW OF LITERATURE	4
2.1 NUTRITION AND ITS IMPORTANCE	4
2.1.1 NUTRITION SCIENCE	4
2.1.2 THE NUTRIENTS	4
2.1.3 FUNCTIONS OF NUTRIENTS	4
2.1.3.1 Carbohydrates	4
2.1.3.2 Proteins	5
2.1.3.3 Fats	5
2.1.3.4 Vitamins	5
2.1.3.5 Minerals	6
15.2 NUTRITIONAL QUALITY	
2.2 MAIZE	6
2.2.1 IMPORTANCE OF MAIZE	6
2.2.2 TYPES OF CORN GRAINS	6
2.2.3 BIOCHEMICAL CHARACTERISTICS OF MAIZE	7
2.2.4 UTILIZATION OF MAIZE	7
2.2.4.1 In Human diets	7
2.2.4.2 Feed Uses	8
2.2.5 PROCESSING OF MAIZE	9
2.2.6 NUTRITIVE VALUE	9

2.2.7 BY PRODUCTS OF MAIZE	10
2.2.7.1 Agricultural Uses	10
2.2.7.2 Industrial Uses	11
2.3 SOYBEAN	11
2.3.1 IMPORTANCE OF SOYBEAN	11
2.3.2 NUTRITIONAL VALUE OF SOYBEAN	12
2.3.3 COMPOUNDS CONTRIBUTING TO THE BEAN	Y
ODOUR OF SOY PROTEIN ISOLATES	13
2.3.4 CURRENT UTILIZATION OF SOYBEANS	14
2.3.5 EFFICIENCY OF INACTIVATION OF TRYPSIN	
INHIBITORS AND HAEMAGLUTININS BY	
ROASTING OF SOYBEAN	16
2.4 MUNGBEAN	17
2.4.1 NUTRITIONAL QUALITY OF MUNGBEAN	18
2.4.2 COMPOSITION OF WHOLE GRAIN AND SPLIT	
DHAL MUNGBEAN	18
2.4.3 DIGESTIBILITY BY PROTEOLYTIC ENZYMES	19
2.4.4 FLATULENCE FACTOR	20
2.4.5 FEEDING TRIALS WITH MUNGBEAN DIETS	21
2.5 CHICKPEA	22
2.5.1 UTILIZATION OF CHICKPEA	22
2.5.2 NUTRITIONAL QUALITY	23
2.5.2.1 Carbohydrates and protein	23
2.5.2.2 Fat and Crude fibre	25
2.5.2.3 Minerals and Vitamins	26
2.5.3 EFFECT OF PROCESSING ON THE NUTRITION	AL
QUALITY OF CHICKPEA BASES PRODUCTS	26
2.6 SENSORY EVALUATION	27
2.6.1 DEFINITION AND USES OF SENSORY	
EVALUATION	27

iv

2.6.1.1 Definition	27
81.0805 2.6.1.2 Uses	28
2.6.2 PREPARING FOR THE TEST	28
2.6.2.1 Testing Area	28
2.6.2.2 Testing Setup	28
2.6.2.3 Lighting	28
2.6.2.4 Testing Schedule	29
2.6.3 PREPARING SAMPLES	29
2.6.4 SELECTION AND TRAINING OF PANELISTS	29
2.6.5 MULTIPLE COMPARISON TEST	29
2.7 MOISTURE SORPTION ISOTHERM STUDIES	
2.7.1 WATER AND WATER ACTIVITY	30
2.7.2 MOISTURE SORPTION ISOTHERM	31
2.7.3 SORPTION ISOTHERM METHODS	32
2.7.4 MONOLAYER STABILITY VALUE (M ₀)	33
2.7.5 B.E.T MONOLAYER CALCULATION	33

CHAPTER 3

3.0 MATERIALS AND METHODS	34
3.1 RAW MATERIALS	34
POLLOWING AADULUS C	
3.2 PREPARATION OF FLOURS	34
3.2.1 PREPARATION OF SOYBEAN FLOUR	34
3.2.2 PREPARATION OF MAIZE FLOUR	34
3.2.3 PREPARATION OF GREEN/GRAM FLOUR	35
3.2.4 PREPARATION OF CHICKPEA FLOUR	35

3.3 DEVELOPMENT OF DIFERENT COMBINATION OF

BLENDS	35
3.3.1 BLEND – 1	35
3.3.2 BLEND – 2	35
3.3.3 BLEND – 3	36

3.4 EQUIPMENT USED FOR THE PREPARATION OF	
BLENDS	36
3.4.1 JACKETED KETTLES	36
3.4.2 ELECTRIC DRIER	37
3.4.3 MICROPULVERISER	37
3.4.4 MECHANICAL DE-HULLER	37
3.5 PROXIMATE ANALYSIS	40
3.5.1 DETERMINATION OF MOISTURE CONTENT	40
3.5.2 DETERMINATION OF ASH CONTENT	40
3.5.3 DETERMINATION OF CRUDE PROTEIN	41
3.5.4 DETERMINATION OF CRUDE FAT	43
3.5.5 DETERMINATION OF CRUDE FIBER	44
3.5.6 DETERMINATION OF TOTAL SUGAR	45
3.5.7 DETERMINATION OF SOLUBLE	
CARBOHYDRATE	46
4.3.1.1 Moisture resplica dais at 30 ° C	
3.6 SENSORY EVALUATION	46
3.6.1 MATERIALS FOR THE SENSORY EVALUATIO	N47
3.6.2 CORDING THE SAMPLE	47
3.6.3 THE CODE NUMBERS DENOTED THE	
FOLLOWING SAMPLES	47
3.6.4 PREPARATION OF SAMPLES FOR PANEL	
TESTING	47
3.6.5 INSTRUCTIONS FOR THE TASTE PANEL	48
3.6.6 EVALUATION OF THE SAMPLES BY PANELIS	T 48
3.6.7 STATISTICAL ANALYSIS	48
3.7 MOISTURE SORPTION STUDIES	50
3.7.1 MATERIALS	50
3.7.2 PREPATION OF SORPTION ISOTHERM	
DETERMINATION UNIT	50

vi

3.7.4 DETERMINATION OF B.E.T MONOLYAER

52

67

69

70

VALUE

CHAPTER 4

	4.0 RESULTS AND DISCUSSION	
	4.1 PROXIMATE COMPOSITION OF THE DEVELOPED	
	BLENDS	54
	4.2 SENSORY EVALUATION OF THE SAMPLES	56
	4.2.1 TASTE	57
	4.2.2 COLOUR	57
	4.2.3 FLAVOUR	58
	4.2.4 OVERALL ACCEPTABILITY	58
and and	4.3 MOISTURE SORPTION ISOTHERM STUDIES	59
	4.3.1 MOISTURE SORPTION DATA	59
	4.3.1.1 Moisture sorption data at 30 $^{\circ}$ C	59
	4.3.1.2 Moisture sorption data at 40 0 C	60
	4.3.2 B.E.T MONOLAYER VALUES	60
	4.3.2.1 B.E.T Monolayer value at 30 ° C	60
	4.3.2.2 B.E.T Monolayer value at 40 0 C	64

CHAPTER 5

5.0 CONCLUSIONS SUGGESTIONS LITERATURE CITED

APPENDIX