PRELIMINARY STUDY ON THE DEVELOPMENT OF A SOYBEAN INCORPORATED BREAK FAST CEREALS ADOPTING DRUM DRYING TECHNOLOGY.

BY

GANESHARETNAM MURALITHARAN

A RESEARCH REPORT

SUBMITTED IN PARTIAL FULFILMENT OF

THE REQUIREMENT OF THE

ADVANCE COURSE

IN

FOOD SCIENCE AND TECHNOLOGY

FOR

THE DEGREE OF

BACHELOR OF SCIENCE IN AGRICULTURE

EASTERN UNIVERSITY, SHRI LANKA

FAG113 Project Report Library - EUSL

Mr.T.D.W.Siriwardena. Supervisor Head/Soybean Food Research Unit Gannoruwa Peradeniya

601/40b4H3 MUR

Date 26 - 12.2000

1999

Approved By 39616

Materohan

Dr (Mrs).T. Mahendran Senior lecturer Department of Agronomy, Faculty of Agriculture Eastern University Sri Lanka

Date. 27 12 2000

Dr.S.Raveendranath, Head / Department of Agronomy, Faculty of Agriculture, Eastern University, Shri Lanka, Chenkalady.

IB

Se

Date.. 31. 12. 1999

PROCE SUPPOSES

ABSTRACT

Satisfactory diets must contain protein that is sufficient not only in quantity, but also in quality. The soybean *Glycine max* belonging to the family legumenosae has the highest protein content among the vegetable protein foods, and rice is the staple food in several countries in the Eastern region.

Experiments were conducted to introduce a new type of soybean incorporated breakfast cereal product by adopting drum drying technology. Here the ratio between the "Bean-Rice" was maintained 30-40% to 70-60% respectively. In addition, to overcome the beany flavor and increase the taste, banana, pumpkin and milk powder were added additionally in each type of combination. Products were prepared as drum dried products and their organoleptic properties were also evaluated.

In sensory evaluation studies, according to the panelists results, the product which contained Rice, Soybean and Banana was selected as best based on the taste ranking.

Moisture sorption studies were conducted for the selected product to find out the optimal level of moisture in the product for long term storage. For this study, Sorption Isotherm determination Unit were prepared by using the empty bottles, plastic tips, test tubes, petric dishes and vaseline. The objective of the moisture sorption study is to determine Brunner- Emmet-Teller (B.E.T) monolayer value. By finding out the values, the optimal level of moisture in the product for long term storage was estimated. This study was conducted at different temperatures, 5^{0} C, 30^{0} C, 40^{0} C and 45^{0} C. Refrigerator was used to maintain 5^{0} C as constant, 30^{0} C was maintained as room temperature and 40^{0} C and 45^{0} C were maintained in decicator.

The monolayer values for the product at 5° C, 30° C, 40° C and 45° C were 2.48, 5.23, 5.12 and 5.8 gram per 100g dry product, respectively.

CONTENTS

ABSTRCT	i ii
ACKNOWLDGEMENT	
CONTENTS	iii
LIST OF FIGURES	vi
LIST OF TABLES	vii
CHAPTER 1: INTRODUCTION	. 1
CHAPTER 2: LITERATURE REVIEW	3
2.1. NUTRITION	3
2.2. FUNCTION OF PROTEIN IN THE DIET	3
2.3. SOYBEAN	3
2.3.1. FACTS ABOUT SOYPROTEIN	4
2.3.2. SOY WHAT	4
2.3.3. MEANING OF BEAN	5 5
2.3.4. DO YOU KNOW?	5
2.3.5. NUTRITIONAL VALUE	6
2.3.5.1. PROTEIN CONTENT	
2.3.5.2. CARBOHYDRATES	7
2.3.5.3. MINERALS AND VITAMINS	7
2.3.5.4. FAT OR OIL	7
2.3.5.5. LECITHIN	8
2.3.5.6. ALKALINE ASH	8
2.3.6. CALORIES VALUE	8
2.3.7. SOY PRODUCTS	9
2.3.7.1. THERE ARE FIVE KINDS OF SOY PRODUCTS	9
2.3.7.2. SOME FAMOUS SOY PRODUCTS	10
2.3.7.3. THE LITTLE GIANT AMONG PROTEIN FOOODS	10
2.3.8. "AFLATOXIN" AND "BEANY FLAVOUR"	11
2.3.8.1. AFLATOXIN	11
2.3.8.2. BEANY FLAVOUR	11
2.3.9. COVER-UPS	11
2.3.9.1. SOME OTHER FOODS THAT CAN BE REMOVED WITH SOY 12 PRODUCTS.	11
2.3.10. ECONOMY OF SOYBEAN	13
2.4. CEREAL PROTEIN	13
2.4.1. RICE	13
2.4.2. RICE PROTEIN 2.4.3. RICE PRODUCTS	14
4.T.J. NICL INODUCIS	15

2.5. CEREALS AND LEGUME FOOD MIXTURES	15
2.5.1. INCORPORATION OF SOYBEAN AND RICE	16
2.5.2. REASONS FOR INCORPORATING BANANAWITH RICE-SOYBEAN	10
MIXTURES	16
2.5.2.1. BIOCHEMICAL AND NUTRITIONAL COMPOSITION OF BANANA	16
2.5.2.2. CARBOHYDRATES	17
2.5.2.3. FLAVOUR CONSTITUENTS	18
2.5.2.4. ORGANIC ACIDS	18
2.5.2.5. THE DESSERT BANANA HAS THERAPEUTIC VALUE IN MANY	10
SPECIAL DIETS	18
SFECIAL DIETS	10
2.6. DRUM DRYING	19
2.6.1. RECONSTITUTION OF DRIED FOODS	19
2.6.2. PACKING OF DRIED FOODS	
2.0.2. FACKING OF DRIED FOODS	19
2.7.STUDY OF MOISTURE SORPTION	21
2.7.1. MOISTURE SORPTION ISOTHERM	21
	21
2.7.2: METHOD OF SORPTION ISOTHERM	22
2.7.3. USE OF THE MOISTURE SORPTION ISOTHERM	22
2.7.4. MONOLAYER VALUE	23
2.7.5. CALCULATION OF BET MONOLAYER VALUE	23
2.8. SENSORY EVALUATION	24
2.8.1. USES OF SENSORY EVALUATION	24
2.8.2. THE FOLLOWING FEATURES SHOULD BE CONSIDERED PROPERLY	
DURING SENSORY EVALUATION	25
2.8.3. PROBLEM ASSOCIATED WITH SENSORY ANALYSIS	26
2.8.4. RANKING	27
CUADTED 2. MATERIAL CANES A CONTRACT C	
CHAPTER 3: MATERIALS AND METHODS	28
3.1. RAW MATERIALS	1010012014
	28
3.1.1. PREPARATION OF INCORPORATED PRODUCTS	28
3.1.1.1. FIRST INCORPORATED PRODUCT	28
3.1.1.2. SECOND INCORPORATED PRODUCT	28
3.1.1.3. THIRD INCORPORATED PRODUCT	29
3.1.1.4. FOURTH INCORPORATED PRODUCT ;	29
3.2. TECHNOLOGY OF DRUM DRYING	30
3.2.1.TEMPERATURE	30
3.2.2. PRESSURE	30
	50
3.3. PROXIMATE ANALYSIS	30
3.3.1. CHEMICAL COMPOSITION OF THE INCORPORATED PRODUCT	30
3 3 1 1 DETERMINIATION OF MOTOTIME CONTENTS	30
3.3.1.2. DETERMINATION OF ASH	31
3.3.1.3. DETERMINATION OF CRUDE PROTEIN	31
3.3.1.4. DETERMINATION OF CRUDE FAT	34
3.3.1.5. DETERMINATION OF CRUDE FIBER	35
3316 DETERMINIATION OF TOTAL SUGAR	35
	111

3.3.1.7. DETERMINATION OF SOLUBLE CARBOHYDRATES	37
3.4. MOISTURE SORPTION STUDY	37
3.4.1. NEEDED MATERIALS	37
3.4.2. PREPARATION OF SATURATED SALT SOLUTIONS	37
3.4.3. INSTRUMENT PREPARATION FOR SORPTION STUDY	39
3.4.4. DETERMINATION OF MOISTURE SORPTION	41
3.4.5. DETERMINATION OF BRUNNUER-EMMEL-TELLER [BET]	41
3.5. SENSORY EVALUATION	43
3.5.1. PREPARATION OF SAMPLES FOR PANEL TESTING	43
3.5.2. CODING OF THE SAMPLES	43
3.5.3. MATERIALS FOR TASTE PANEL	43
3.5.4. CONDUCTING THE TASTE PANEL	43
3.5.5. EVALUATION OF THE SAMPLES BY PANELIST	44
3.5.6. STATISTICAL ANALYSIS	44
CHAPTER 4: RESULTS AND DISCUSSION	46
4.1. COMPARISON OF PROXIMATE COMPOSITION OF FOUR KINDS OF	
INCORPORATED MIXTURE	46
4.2. MOISTURE SORPTION	47
4.2.1.SORPTION DATA OF THE SELECTED INCOPORATED PRODUCT (B)	47
4.2.2. B.E.T MONOLAYER VALUES	50
4.2.2.1. B.E.T MONOLAYER VALUES OF PRODUCT B AT 5 ^o C	50
4.2.2.2. B.E.T MONOLAYER VALUE FROM THE B.E.T MONOLAYER PLOT	50
4.2.2.3. B.E.T MONOLAYER THE VALUE FROM B.E.T PLOT	52
4.2.2.4. B.E.T MONOLAYER VALUE FROM B.E.T PLOT	
4.2.2.5. B.E.T MONOLAYER VALUE FROM B.E.T PLOT	
4.3. SENSORY EVALUATION	55
4.3.1. TASTE	57
4.3.2. COLOUR	57
4.3.3. AROMA	57
4.3.4. OVERALL ACCEPTABILITY	57
CHAPTER 5: CONCLUSION	60
SUGGESTIONS	61
CHAPTER 6: BIBLIOGRAPHY	62

v

•